Nuprl Lemma : wf-term_wf

[opr:Type]. ∀[sort:term(opr) ⟶ ℕ]. ∀[arity:opr ⟶ ((ℕ × ℕList)]. ∀[t:term(opr)].  (wf-term(arity;sort;t) ∈ 𝔹)


Proof




Definitions occuring in Statement :  wf-term: wf-term(arity;sort;t) term: term(opr) list: List nat: bool: 𝔹 uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x] product: x:A × B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] and: P ∧ Q prop: guard: {T} int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B decidable: Dec(P) or: P ∨ Q subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) coterm-fun: coterm-fun(opr;T) wf-term: wf-term(arity;sort;t) has-value: (a)↓ uiff: uiff(P;Q) pi1: fst(t) pi2: snd(t) mkterm: mkterm(opr;bts) bfalse: ff band: p ∧b q ifthenelse: if then else fi 
Lemmas referenced :  nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf istype-less_than int_seg_properties int_seg_wf subtract-1-ge-0 decidable__equal_int subtract_wf subtype_base_sq set_subtype_base int_subtype_base intformnot_wf intformeq_wf itermSubtract_wf int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_subtract_lemma decidable__le decidable__lt istype-le subtype_rel_self term-ext subtype_rel_weakening term_wf coterm-fun_wf ext-eq_inversion btrue_wf term-size_wf value-type-has-value list_wf nat_wf list-value-type eq_int_wf length_wf varname_wf bool_cases bool_wf bool_subtype_base eqtt_to_assert band_wf assert_of_eq_int bl-all_wf zip_wf l_member_wf pi1_wf subtype_rel_product istype-nat pi2_wf term-size-positive bfalse_wf itermAdd_wf int_term_value_add_lemma istype-universe term_size_mkterm_lemma summand-le-lsum member-zip
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut lambdaFormation_alt thin introduction extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename sqequalRule intWeakElimination natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality dependent_functionElimination Error :memTop,  independent_pairFormation universeIsType voidElimination isect_memberEquality_alt axiomEquality equalityTransitivity equalitySymmetry functionIsTypeImplies inhabitedIsType isectIsTypeImplies productElimination unionElimination applyEquality instantiate because_Cache applyLambdaEquality dependent_set_memberEquality_alt productIsType promote_hyp hypothesis_subsumption callbyvalueReduce productEquality closedConclusion cumulativity intEquality setIsType equalityIstype addEquality functionIsType universeEquality independent_pairEquality

Latex:
\mforall{}[opr:Type].  \mforall{}[sort:term(opr)  {}\mrightarrow{}  \mBbbN{}].  \mforall{}[arity:opr  {}\mrightarrow{}  ((\mBbbN{}  \mtimes{}  \mBbbN{})  List)].  \mforall{}[t:term(opr)].
    (wf-term(arity;sort;t)  \mmember{}  \mBbbB{})



Date html generated: 2020_05_19-PM-09_58_15
Last ObjectModification: 2020_03_12-AM-10_44_21

Theory : terms


Home Index