Nuprl Lemma : inv_image_ind_a

[T:Type]. ∀[r:T ⟶ T ⟶ ℙ]. ∀[S:Type].  ∀f:S ⟶ T. (WellFnd{i}(T;x,y.r[x;y])  WellFnd{i}(S;x,y.r[f x;f y]))


Proof




Definitions occuring in Statement :  wellfounded: WellFnd{i}(A;x,y.R[x; y]) uall: [x:A]. B[x] prop: so_apply: x[s1;s2] all: x:A. B[x] implies:  Q apply: a function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] implies:  Q member: t ∈ T prop: so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] wellfounded: WellFnd{i}(A;x,y.R[x; y]) guard: {T} so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  wellfounded_wf all_wf equal_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality sqequalRule lambdaEquality applyEquality hypothesis functionEquality Error :inhabitedIsType,  Error :functionIsType,  Error :universeIsType,  universeEquality independent_functionElimination because_Cache dependent_functionElimination equalitySymmetry hyp_replacement applyLambdaEquality

Latex:
\mforall{}[T:Type].  \mforall{}[r:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[S:Type].
    \mforall{}f:S  {}\mrightarrow{}  T.  (WellFnd\{i\}(T;x,y.r[x;y])  {}\mRightarrow{}  WellFnd\{i\}(S;x,y.r[f  x;f  y]))



Date html generated: 2019_06_20-AM-11_19_12
Last ObjectModification: 2018_09_26-AM-10_41_44

Theory : well_fnd


Home Index