Nuprl Lemma : assert-bag-null-sq

bs:bag(Top). ((↑bag-null(bs))  (bs {}))


Proof




Definitions occuring in Statement :  bag-null: bag-null(bs) empty-bag: {} bag: bag(T) assert: b top: Top all: x:A. B[x] implies:  Q sqequal: t
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a prop:
Lemmas referenced :  assert-bag-null top_wf equal-empty-bag assert_wf bag-null_wf bag_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesis hypothesisEquality productElimination independent_isectElimination dependent_functionElimination independent_functionElimination

Latex:
\mforall{}bs:bag(Top).  ((\muparrow{}bag-null(bs))  {}\mRightarrow{}  (bs  \msim{}  \{\}))



Date html generated: 2016_05_15-PM-02_25_16
Last ObjectModification: 2015_12_27-AM-09_53_04

Theory : bags


Home Index