Nuprl Lemma : assert-bag-null-sq
∀bs:bag(Top). ((↑bag-null(bs)) 
⇒ (bs ~ {}))
Proof
Definitions occuring in Statement : 
bag-null: bag-null(bs)
, 
empty-bag: {}
, 
bag: bag(T)
, 
assert: ↑b
, 
top: Top
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
sqequal: s ~ t
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
prop: ℙ
Lemmas referenced : 
assert-bag-null, 
top_wf, 
equal-empty-bag, 
assert_wf, 
bag-null_wf, 
bag_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
hypothesisEquality, 
productElimination, 
independent_isectElimination, 
dependent_functionElimination, 
independent_functionElimination
Latex:
\mforall{}bs:bag(Top).  ((\muparrow{}bag-null(bs))  {}\mRightarrow{}  (bs  \msim{}  \{\}))
Date html generated:
2016_05_15-PM-02_25_16
Last ObjectModification:
2015_12_27-AM-09_53_04
Theory : bags
Home
Index