Nuprl Lemma : b_all-wf2
∀[T:Type]. ∀[b:bag(T)]. ∀[P:{x:T| x ↓∈ b}  ⟶ ℙ].  (b_all(T;b;x.P[x]) ∈ ℙ)
Proof
Definitions occuring in Statement : 
b_all: b_all(T;b;x.P[x])
, 
bag-member: x ↓∈ bs
, 
bag: bag(T)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
b_all: b_all(T;b;x.P[x])
, 
so_lambda: λ2x.t[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
all_wf, 
bag-member_wf, 
bag_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
lambdaEquality, 
functionEquality, 
because_Cache, 
hypothesis, 
applyEquality, 
dependent_set_memberEquality, 
universeEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
setEquality, 
isect_memberEquality
Latex:
\mforall{}[T:Type].  \mforall{}[b:bag(T)].  \mforall{}[P:\{x:T|  x  \mdownarrow{}\mmember{}  b\}    {}\mrightarrow{}  \mBbbP{}].    (b\_all(T;b;x.P[x])  \mmember{}  \mBbbP{})
Date html generated:
2016_05_15-PM-02_41_15
Last ObjectModification:
2015_12_27-AM-09_40_50
Theory : bags
Home
Index