Nuprl Lemma : bag-combine-restrict_wf
∀[A,B:Type]. ∀[b:bag(A)]. ∀[f:{a:A| a ↓∈ b}  ⟶ bag(B)].  (bag-combine-restrict(b;x.f[x]) ∈ bag(B))
Proof
Definitions occuring in Statement : 
bag-combine-restrict: bag-combine-restrict(b;x.f[x])
, 
bag-member: x ↓∈ bs
, 
bag: bag(T)
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
bag-combine-restrict: bag-combine-restrict(b;x.f[x])
, 
bag-combine: ⋃x∈bs.f[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
Lemmas referenced : 
bag-union_wf, 
bag-map_wf, 
bag_wf, 
bag-member_wf, 
bag-subtype
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
setEquality, 
lambdaEquality, 
applyEquality, 
cumulativity, 
dependent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
sqequalRule, 
axiomEquality, 
functionEquality, 
isect_memberEquality, 
because_Cache, 
universeEquality
Latex:
\mforall{}[A,B:Type].  \mforall{}[b:bag(A)].  \mforall{}[f:\{a:A|  a  \mdownarrow{}\mmember{}  b\}    {}\mrightarrow{}  bag(B)].    (bag-combine-restrict(b;x.f[x])  \mmember{}  bag(B))
Date html generated:
2016_05_15-PM-02_49_00
Last ObjectModification:
2015_12_27-AM-09_35_19
Theory : bags
Home
Index