Nuprl Lemma : bag-mapfilter-append
∀[T:Type]. ∀[a:bag(T)]. ∀[b:bag(Top)]. ∀[f:Top]. ∀[P:T ⟶ 𝔹].
  (bag-mapfilter(f;P;a + b) ~ bag-mapfilter(f;P;a) + bag-mapfilter(f;P;b))
Proof
Definitions occuring in Statement : 
bag-mapfilter: bag-mapfilter(f;P;bs)
, 
bag-append: as + bs
, 
bag: bag(T)
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
bag-mapfilter: bag-mapfilter(f;P;bs)
, 
so_lambda: λ2x.t[x]
, 
top: Top
, 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
uimplies: b supposing a
Lemmas referenced : 
bag-filter-append, 
bag-map-append, 
bag-filter_wf, 
subtype_rel_bag, 
top_wf, 
assert_wf, 
bool_wf, 
bag_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
hypothesisEquality, 
lambdaEquality, 
applyEquality, 
setEquality, 
independent_isectElimination, 
because_Cache, 
sqequalAxiom, 
functionEquality, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[a:bag(T)].  \mforall{}[b:bag(Top)].  \mforall{}[f:Top].  \mforall{}[P:T  {}\mrightarrow{}  \mBbbB{}].
    (bag-mapfilter(f;P;a  +  b)  \msim{}  bag-mapfilter(f;P;a)  +  bag-mapfilter(f;P;b))
Date html generated:
2016_05_15-PM-02_25_55
Last ObjectModification:
2015_12_27-AM-09_52_40
Theory : bags
Home
Index