Nuprl Lemma : bag-mapfilter-append

[T:Type]. ∀[a:bag(T)]. ∀[b:bag(Top)]. ∀[f:Top]. ∀[P:T ⟶ 𝔹].
  (bag-mapfilter(f;P;a b) bag-mapfilter(f;P;a) bag-mapfilter(f;P;b))


Proof




Definitions occuring in Statement :  bag-mapfilter: bag-mapfilter(f;P;bs) bag-append: as bs bag: bag(T) bool: 𝔹 uall: [x:A]. B[x] top: Top function: x:A ⟶ B[x] universe: Type sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T bag-mapfilter: bag-mapfilter(f;P;bs) so_lambda: λ2x.t[x] top: Top so_apply: x[s] subtype_rel: A ⊆B prop: uimplies: supposing a
Lemmas referenced :  bag-filter-append bag-map-append bag-filter_wf subtype_rel_bag top_wf assert_wf bool_wf bag_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin isect_memberEquality voidElimination voidEquality hypothesis hypothesisEquality lambdaEquality applyEquality setEquality independent_isectElimination because_Cache sqequalAxiom functionEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[a:bag(T)].  \mforall{}[b:bag(Top)].  \mforall{}[f:Top].  \mforall{}[P:T  {}\mrightarrow{}  \mBbbB{}].
    (bag-mapfilter(f;P;a  +  b)  \msim{}  bag-mapfilter(f;P;a)  +  bag-mapfilter(f;P;b))



Date html generated: 2016_05_15-PM-02_25_55
Last ObjectModification: 2015_12_27-AM-09_52_40

Theory : bags


Home Index