Nuprl Lemma : bag-maximals_wf

[T:Type]. ∀[b:bag(T)]. ∀[R:T ⟶ T ⟶ 𝔹].  (bag-maximals(b;R) ∈ bag(T))


Proof




Definitions occuring in Statement :  bag-maximals: bag-maximals(bg;R) bag: bag(T) bool: 𝔹 uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T bag-maximals: bag-maximals(bg;R) so_lambda: λ2x.t[x] so_apply: x[s] subtype_rel: A ⊆B prop: uimplies: supposing a
Lemmas referenced :  bag-filter_wf bag-maximal?_wf subtype_rel_bag assert_wf bool_wf bag_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaEquality hypothesis applyEquality setEquality independent_isectElimination setElimination rename because_Cache axiomEquality equalityTransitivity equalitySymmetry functionEquality isect_memberEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[b:bag(T)].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbB{}].    (bag-maximals(b;R)  \mmember{}  bag(T))



Date html generated: 2016_05_15-PM-02_30_41
Last ObjectModification: 2015_12_27-AM-09_48_37

Theory : bags


Home Index