Nuprl Lemma : bag-member-filter-implies1

[T:Type]. ∀[x:T]. ∀[bs:bag(T)]. ∀[P:{x:T| x ↓∈ bs}  ⟶ 𝔹].  x ↓∈ [x∈bs|P[x]] supposing x ↓∈ bs ∧ (↑P[x])


Proof




Definitions occuring in Statement :  bag-member: x ↓∈ bs bag-filter: [x∈b|p[x]] bag: bag(T) assert: b bool: 𝔹 uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] and: P ∧ Q set: {x:A| B[x]}  function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T prop: and: P ∧ Q all: x:A. B[x] uiff: uiff(P;Q) uimplies: supposing a cand: c∧ B so_lambda: λ2x.t[x] so_apply: x[s] iff: ⇐⇒ Q rev_implies:  Q implies:  Q subtype_rel: A ⊆B guard: {T} bag-member: x ↓∈ bs squash: T
Lemmas referenced :  bag_wf bool_wf assert_wf subtype_rel_bag bag-filter-wf2 bag-subtype2 bag-subtype bag-member_wf bag-member-filter
Rules used in proof :  cut lemma_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isectElimination thin setEquality hypothesisEquality hypothesis productElimination because_Cache dependent_functionElimination equalityTransitivity equalitySymmetry independent_isectElimination sqequalRule independent_pairFormation independent_functionElimination lambdaEquality applyEquality setElimination rename productEquality cumulativity dependent_set_memberEquality functionEquality universeEquality isect_memberFormation introduction imageElimination imageMemberEquality baseClosed isect_memberEquality

Latex:
\mforall{}[T:Type].  \mforall{}[x:T].  \mforall{}[bs:bag(T)].  \mforall{}[P:\{x:T|  x  \mdownarrow{}\mmember{}  bs\}    {}\mrightarrow{}  \mBbbB{}].
    x  \mdownarrow{}\mmember{}  [x\mmember{}bs|P[x]]  supposing  x  \mdownarrow{}\mmember{}  bs  \mwedge{}  (\muparrow{}P[x])



Date html generated: 2016_05_15-PM-02_47_32
Last ObjectModification: 2016_01_16-AM-08_43_37

Theory : bags


Home Index