Nuprl Lemma : bag-subtype2
∀[A:Type]. ∀P:A ⟶ ℙ. ∀b:bag({x:A| P[x]} ). ∀x:{x:A| P[x]} .  (x ↓∈ b 
⇐⇒ x ↓∈ b)
Proof
Definitions occuring in Statement : 
bag-member: x ↓∈ bs
, 
bag: bag(T)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
set: {x:A| B[x]} 
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
rev_implies: P 
⇐ Q
, 
so_lambda: λ2x.t[x]
, 
bag-member: x ↓∈ bs
, 
squash: ↓T
, 
sq_stable: SqStable(P)
, 
exists: ∃x:A. B[x]
, 
bag: bag(T)
, 
quotient: x,y:A//B[x; y]
, 
cand: A c∧ B
, 
permutation: permutation(T;L1;L2)
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
label: ...$L... t
, 
guard: {T}
Lemmas referenced : 
bag-member_wf, 
subtype_rel_bag, 
set_wf, 
bag_wf, 
bag_to_squash_list, 
sq_stable__bag-member, 
member_wf, 
list_wf, 
subtype_rel_list, 
permutation_wf, 
permutation_inversion, 
permute_list_wf, 
list-eq-subtype2, 
quotient-member-eq, 
permutation-equiv, 
l_member-settype, 
equal_wf, 
list-subtype-bag, 
subtype_rel_self, 
l_member_wf, 
permutation-strong-subtype, 
strong-subtype-set2, 
bag-member-subtype
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
independent_pairFormation, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
setElimination, 
rename, 
hypothesis, 
applyEquality, 
setEquality, 
functionExtensionality, 
because_Cache, 
sqequalRule, 
independent_isectElimination, 
lambdaEquality, 
dependent_set_memberEquality, 
universeEquality, 
functionEquality, 
dependent_functionElimination, 
productElimination, 
independent_pairEquality, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
instantiate, 
independent_functionElimination, 
promote_hyp, 
equalitySymmetry, 
hyp_replacement, 
applyLambdaEquality, 
pertypeElimination, 
productEquality, 
equalityTransitivity, 
dependent_pairFormation
Latex:
\mforall{}[A:Type].  \mforall{}P:A  {}\mrightarrow{}  \mBbbP{}.  \mforall{}b:bag(\{x:A|  P[x]\}  ).  \mforall{}x:\{x:A|  P[x]\}  .    (x  \mdownarrow{}\mmember{}  b  \mLeftarrow{}{}\mRightarrow{}  x  \mdownarrow{}\mmember{}  b)
Date html generated:
2017_10_01-AM-08_56_31
Last ObjectModification:
2017_07_26-PM-04_38_53
Theory : bags
Home
Index