Nuprl Lemma : bag-subtype2

[A:Type]. ∀P:A ⟶ ℙ. ∀b:bag({x:A| P[x]} ). ∀x:{x:A| P[x]} .  (x ↓∈ ⇐⇒ x ↓∈ b)


Proof




Definitions occuring in Statement :  bag-member: x ↓∈ bs bag: bag(T) uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] iff: ⇐⇒ Q set: {x:A| B[x]}  function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q prop: subtype_rel: A ⊆B so_apply: x[s] uimplies: supposing a rev_implies:  Q so_lambda: λ2x.t[x] bag-member: x ↓∈ bs squash: T sq_stable: SqStable(P) exists: x:A. B[x] bag: bag(T) quotient: x,y:A//B[x; y] cand: c∧ B permutation: permutation(T;L1;L2) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] label: ...$L... t guard: {T}
Lemmas referenced :  bag-member_wf subtype_rel_bag set_wf bag_wf bag_to_squash_list sq_stable__bag-member member_wf list_wf subtype_rel_list permutation_wf permutation_inversion permute_list_wf list-eq-subtype2 quotient-member-eq permutation-equiv l_member-settype equal_wf list-subtype-bag subtype_rel_self l_member_wf permutation-strong-subtype strong-subtype-set2 bag-member-subtype
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation independent_pairFormation extract_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality setElimination rename hypothesis applyEquality setEquality functionExtensionality because_Cache sqequalRule independent_isectElimination lambdaEquality dependent_set_memberEquality universeEquality functionEquality dependent_functionElimination productElimination independent_pairEquality imageElimination imageMemberEquality baseClosed instantiate independent_functionElimination promote_hyp equalitySymmetry hyp_replacement applyLambdaEquality pertypeElimination productEquality equalityTransitivity dependent_pairFormation

Latex:
\mforall{}[A:Type].  \mforall{}P:A  {}\mrightarrow{}  \mBbbP{}.  \mforall{}b:bag(\{x:A|  P[x]\}  ).  \mforall{}x:\{x:A|  P[x]\}  .    (x  \mdownarrow{}\mmember{}  b  \mLeftarrow{}{}\mRightarrow{}  x  \mdownarrow{}\mmember{}  b)



Date html generated: 2017_10_01-AM-08_56_31
Last ObjectModification: 2017_07_26-PM-04_38_53

Theory : bags


Home Index