Nuprl Lemma : sub-bag-singleton-left

[T:Type]. ∀[b:bag(T)]. ∀[x:T].  x ↓∈ supposing sub-bag(T;{x};b)


Proof




Definitions occuring in Statement :  bag-member: x ↓∈ bs sub-bag: sub-bag(T;as;bs) single-bag: {x} bag: bag(T) uimplies: supposing a uall: [x:A]. B[x] universe: Type
Definitions unfolded in proof :  sub-bag: sub-bag(T;as;bs) exists: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q sq_or: a ↓∨ b or: P ∨ Q uiff: uiff(P;Q) uimplies: supposing a prop: squash: T bag-member: x ↓∈ bs
Lemmas referenced :  bag-member-append single-bag_wf bag-member-single bag-member_wf sub-bag_wf bag_wf
Rules used in proof :  sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity productElimination thin cut hypothesis introduction extract_by_obid isectElimination because_Cache dependent_functionElimination hypothesisEquality cumulativity independent_functionElimination inlFormation independent_isectElimination sqequalRule imageMemberEquality baseClosed hyp_replacement equalitySymmetry Error :applyLambdaEquality,  universeEquality isect_memberFormation imageElimination isect_memberEquality equalityTransitivity

Latex:
\mforall{}[T:Type].  \mforall{}[b:bag(T)].  \mforall{}[x:T].    x  \mdownarrow{}\mmember{}  b  supposing  sub-bag(T;\{x\};b)



Date html generated: 2016_10_25-AM-10_37_45
Last ObjectModification: 2016_07_12-AM-06_51_13

Theory : bags


Home Index