Nuprl Lemma : lift-predicate_wf

[A:Type]. ∀[P:A ⟶ ℙ].  P? ∈ bar(A) ⟶ ℙ supposing value-type(A)


Proof




Definitions occuring in Statement :  lift-predicate: P? bar: bar(T) value-type: value-type(T) uimplies: supposing a uall: [x:A]. B[x] prop: member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a lift-predicate: P? implies:  Q prop: subtype_rel: A ⊆B bar: bar(T)
Lemmas referenced :  termination value-type_wf bar_wf has-value_wf-bar
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lambdaEquality functionEquality lemma_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality independent_isectElimination hypothesis applyEquality universeEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache

Latex:
\mforall{}[A:Type].  \mforall{}[P:A  {}\mrightarrow{}  \mBbbP{}].    P?  \mmember{}  bar(A)  {}\mrightarrow{}  \mBbbP{}  supposing  value-type(A)



Date html generated: 2016_05_15-PM-10_04_26
Last ObjectModification: 2016_01_05-PM-06_50_55

Theory : bar!type


Home Index