Nuprl Lemma : lift-predicate_wf
∀[A:Type]. ∀[P:A ⟶ ℙ].  P? ∈ bar(A) ⟶ ℙ supposing value-type(A)
Proof
Definitions occuring in Statement : 
lift-predicate: P?
, 
bar: bar(T)
, 
value-type: value-type(T)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
lift-predicate: P?
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
bar: bar(T)
Lemmas referenced : 
termination, 
value-type_wf, 
bar_wf, 
has-value_wf-bar
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lambdaEquality, 
functionEquality, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
independent_isectElimination, 
hypothesis, 
applyEquality, 
universeEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
because_Cache
Latex:
\mforall{}[A:Type].  \mforall{}[P:A  {}\mrightarrow{}  \mBbbP{}].    P?  \mmember{}  bar(A)  {}\mrightarrow{}  \mBbbP{}  supposing  value-type(A)
Date html generated:
2016_05_15-PM-10_04_26
Last ObjectModification:
2016_01_05-PM-06_50_55
Theory : bar!type
Home
Index