Nuprl Lemma : sq_stable__has-value
∀[A:Type]. ∀[a:bar(A)]. SqStable((a)↓) supposing value-type(A)
Proof
Definitions occuring in Statement : 
bar: bar(T), 
value-type: value-type(T), 
has-value: (a)↓, 
sq_stable: SqStable(P), 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
universe: Type
Definitions unfolded in proof : 
prop: ℙ, 
has-value: (a)↓, 
implies: P ⇒ Q, 
sq_stable: SqStable(P), 
uimplies: b supposing a, 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
squash: ↓T
Lemmas referenced : 
squash_wf, 
has-value_wf-bar, 
value-type_wf
Rules used in proof : 
universeEquality, 
equalitySymmetry, 
equalityTransitivity, 
because_Cache, 
isect_memberEquality, 
independent_isectElimination, 
isectElimination, 
lemma_by_obid, 
hypothesis, 
axiomSqleEquality, 
hypothesisEquality, 
thin, 
dependent_functionElimination, 
lambdaEquality, 
sqequalHypSubstitution, 
sqequalRule, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
lambdaFormation, 
imageElimination
Latex:
\mforall{}[A:Type].  \mforall{}[a:bar(A)].  SqStable((a)\mdownarrow{})  supposing  value-type(A)
Date html generated:
2020_05_20-AM-09_07_28
Last ObjectModification:
2020_01_24-PM-02_33_35
Theory : bar!type
Home
Index