Nuprl Lemma : sq_stable__has-value


[A:Type]. ∀[a:bar(A)]. SqStable((a)↓supposing value-type(A)


Proof




Definitions occuring in Statement :  bar: bar(T) value-type: value-type(T) has-value: (a)↓ sq_stable: SqStable(P) uimplies: supposing a uall: [x:A]. B[x] universe: Type
Definitions unfolded in proof :  prop: has-value: (a)↓ implies:  Q sq_stable: SqStable(P) uimplies: supposing a member: t ∈ T uall: [x:A]. B[x] squash: T
Lemmas referenced :  squash_wf has-value_wf-bar value-type_wf
Rules used in proof :  universeEquality equalitySymmetry equalityTransitivity because_Cache isect_memberEquality independent_isectElimination isectElimination lemma_by_obid hypothesis axiomSqleEquality hypothesisEquality thin dependent_functionElimination lambdaEquality sqequalHypSubstitution sqequalRule cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution lambdaFormation imageElimination

Latex:
\mforall{}[A:Type].  \mforall{}[a:bar(A)].  SqStable((a)\mdownarrow{})  supposing  value-type(A)



Date html generated: 2020_05_20-AM-09_07_28
Last ObjectModification: 2020_01_24-PM-02_33_35

Theory : bar!type


Home Index