Nuprl Lemma : Russell-paradox

¬(𝕌' ⊆Type)


Proof




Definitions occuring in Statement :  subtype_rel: A ⊆B not: ¬A universe: Type
Definitions unfolded in proof :  not: ¬A implies:  Q false: False member: t ∈ T uall: [x:A]. B[x] Russell: Russell isect2: T1 ⋂ T2 bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  bfalse: ff subtype_rel: A ⊆B prop:
Lemmas referenced :  Russell-property subtype_rel_wf bool_wf Russell_wf isect2_subtype_rel2 base_wf not_wf equal-wf-base isect2_subtype_rel
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut introduction extract_by_obid sqequalHypSubstitution independent_functionElimination thin voidElimination universeIsType instantiate isectElimination universeEquality cumulativity hypothesis dependent_set_memberEquality_alt isect_memberEquality unionElimination equalityElimination sqequalRule applyEquality baseClosed hypothesisEquality equalityTransitivity equalitySymmetry because_Cache

Latex:
\mneg{}(\mBbbU{}'  \msubseteq{}r  Type)



Date html generated: 2019_10_15-AM-10_46_46
Last ObjectModification: 2018_10_09-AM-09_38_28

Theory : basic


Home Index