Nuprl Lemma : Russell-theorem

¬(Type ∈ Type)


Proof




Definitions occuring in Statement :  not: ¬A member: t ∈ T universe: Type
Definitions unfolded in proof :  not: ¬A implies:  Q false: False member: t ∈ T Russell: Russell isect2: T1 ⋂ T2 bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  bfalse: ff uall: [x:A]. B[x] subtype_rel: A ⊆B guard: {T} prop:
Lemmas referenced :  Russell-property istype-universe isect2_subtype_rel base_wf isect2_subtype_rel2 istype-void isect2_wf not_wf equal-wf-base
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut introduction extract_by_obid hypothesis sqequalHypSubstitution independent_functionElimination thin voidElimination sqequalRule equalityIsType4 universeIsType universeEquality baseClosed because_Cache dependent_set_memberEquality_alt isect_memberEquality unionElimination equalityElimination functionIsType isectElimination hypothesisEquality applyEquality instantiate cumulativity equalityTransitivity equalitySymmetry setEquality

Latex:
\mneg{}(Type  \mmember{}  Type)



Date html generated: 2019_10_15-AM-10_46_48
Last ObjectModification: 2018_10_09-AM-09_54_22

Theory : basic


Home Index