Nuprl Lemma : constant-type-functor_wf

[X:Type]. (constant-type-functor(X) ∈ Functor)


Proof




Definitions occuring in Statement :  constant-type-functor: constant-type-functor(X) type-functor: Functor uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] constant-type-functor: constant-type-functor(X) type-functor: Functor member: t ∈ T top: Top compose: g and: P ∧ Q cand: c∧ B all: x:A. B[x] so_lambda: λ2x.t[x] subtype_rel: A ⊆B implies:  Q prop: so_apply: x[s] uimplies: supposing a exists: x:A. B[x]
Lemmas referenced :  top_wf all_wf equal-wf-T-base equal_wf isect_subtype_rel_trivial subtype_rel_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation dependent_set_memberEquality dependent_pairEquality lambdaEquality cumulativity hypothesisEquality universeEquality isect_memberEquality sqequalHypSubstitution sqequalRule applyEquality cut introduction extract_by_obid hypothesis voidElimination voidEquality functionEquality isectEquality functionExtensionality lambdaFormation independent_pairFormation because_Cache productElimination thin productEquality instantiate isectElimination equalityTransitivity equalitySymmetry dependent_functionElimination independent_functionElimination baseClosed independent_isectElimination dependent_pairFormation

Latex:
\mforall{}[X:Type].  (constant-type-functor(X)  \mmember{}  Functor)



Date html generated: 2017_10_01-AM-08_28_38
Last ObjectModification: 2017_07_26-PM-04_23_37

Theory : basic


Home Index