Nuprl Lemma : constant-type-functor_wf
∀[X:Type]. (constant-type-functor(X) ∈ Functor)
Proof
Definitions occuring in Statement : 
constant-type-functor: constant-type-functor(X)
, 
type-functor: Functor
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
constant-type-functor: constant-type-functor(X)
, 
type-functor: Functor
, 
member: t ∈ T
, 
top: Top
, 
compose: f o g
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
all: ∀x:A. B[x]
, 
so_lambda: λ2x.t[x]
, 
subtype_rel: A ⊆r B
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
exists: ∃x:A. B[x]
Lemmas referenced : 
top_wf, 
all_wf, 
equal-wf-T-base, 
equal_wf, 
isect_subtype_rel_trivial, 
subtype_rel_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
dependent_set_memberEquality, 
dependent_pairEquality, 
lambdaEquality, 
cumulativity, 
hypothesisEquality, 
universeEquality, 
isect_memberEquality, 
sqequalHypSubstitution, 
sqequalRule, 
applyEquality, 
cut, 
introduction, 
extract_by_obid, 
hypothesis, 
voidElimination, 
voidEquality, 
functionEquality, 
isectEquality, 
functionExtensionality, 
lambdaFormation, 
independent_pairFormation, 
because_Cache, 
productElimination, 
thin, 
productEquality, 
instantiate, 
isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
independent_functionElimination, 
baseClosed, 
independent_isectElimination, 
dependent_pairFormation
Latex:
\mforall{}[X:Type].  (constant-type-functor(X)  \mmember{}  Functor)
Date html generated:
2017_10_01-AM-08_28_38
Last ObjectModification:
2017_07_26-PM-04_23_37
Theory : basic
Home
Index