Nuprl Lemma : decidable_decision

[P:ℙ]. ∀[x:Dec(P)].  (x ∈ Decision)


Proof




Definitions occuring in Statement :  decision: Decision decidable: Dec(P) uall: [x:A]. B[x] prop: member: t ∈ T
Definitions unfolded in proof :  decision: Decision decidable: Dec(P) or: P ∨ Q uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B prop: uimplies: supposing a top: Top
Lemmas referenced :  subtype_rel_union not_wf top_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity sqequalRule isect_memberFormation introduction cut hypothesisEquality applyEquality thin extract_by_obid sqequalHypSubstitution isectElimination hypothesis because_Cache independent_isectElimination lambdaEquality isect_memberEquality voidElimination voidEquality axiomEquality equalityTransitivity equalitySymmetry unionEquality cumulativity universeEquality

Latex:
\mforall{}[P:\mBbbP{}].  \mforall{}[x:Dec(P)].    (x  \mmember{}  Decision)



Date html generated: 2019_10_15-AM-10_46_56
Last ObjectModification: 2018_09_17-PM-06_45_37

Theory : basic


Home Index