Nuprl Lemma : identity-functor_wf
Id ∈ Functor
Proof
Definitions occuring in Statement :
identity-functor: Id
,
type-functor: Functor
,
member: t ∈ T
Definitions unfolded in proof :
identity-functor: Id
,
type-functor: Functor
,
member: t ∈ T
,
compose: f o g
,
and: P ∧ Q
,
cand: A c∧ B
,
all: ∀x:A. B[x]
,
uall: ∀[x:A]. B[x]
,
so_lambda: λ2x.t[x]
,
subtype_rel: A ⊆r B
,
implies: P
⇒ Q
,
prop: ℙ
,
so_apply: x[s]
,
uimplies: b supposing a
,
exists: ∃x:A. B[x]
Lemmas referenced :
all_wf,
equal-wf-T-base,
equal_wf,
isect_subtype_rel_trivial,
subtype_rel_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
dependent_set_memberEquality,
dependent_pairEquality,
lambdaEquality,
cumulativity,
hypothesisEquality,
universeEquality,
isect_memberEquality,
sqequalRule,
functionEquality,
isectEquality,
applyEquality,
functionExtensionality,
cut,
lambdaFormation,
hypothesis,
independent_pairFormation,
productElimination,
thin,
productEquality,
instantiate,
introduction,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
equalityTransitivity,
equalitySymmetry,
because_Cache,
dependent_functionElimination,
independent_functionElimination,
baseClosed,
independent_isectElimination,
dependent_pairFormation
Latex:
Id \mmember{} Functor
Date html generated:
2017_10_01-AM-08_28_37
Last ObjectModification:
2017_07_26-PM-04_23_36
Theory : basic
Home
Index