Nuprl Lemma : identity-functor_wf

Id ∈ Functor


Proof




Definitions occuring in Statement :  identity-functor: Id type-functor: Functor member: t ∈ T
Definitions unfolded in proof :  identity-functor: Id type-functor: Functor member: t ∈ T compose: g and: P ∧ Q cand: c∧ B all: x:A. B[x] uall: [x:A]. B[x] so_lambda: λ2x.t[x] subtype_rel: A ⊆B implies:  Q prop: so_apply: x[s] uimplies: supposing a exists: x:A. B[x]
Lemmas referenced :  all_wf equal-wf-T-base equal_wf isect_subtype_rel_trivial subtype_rel_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity dependent_set_memberEquality dependent_pairEquality lambdaEquality cumulativity hypothesisEquality universeEquality isect_memberEquality sqequalRule functionEquality isectEquality applyEquality functionExtensionality cut lambdaFormation hypothesis independent_pairFormation productElimination thin productEquality instantiate introduction extract_by_obid sqequalHypSubstitution isectElimination equalityTransitivity equalitySymmetry because_Cache dependent_functionElimination independent_functionElimination baseClosed independent_isectElimination dependent_pairFormation

Latex:
Id  \mmember{}  Functor



Date html generated: 2017_10_01-AM-08_28_37
Last ObjectModification: 2017_07_26-PM-04_23_36

Theory : basic


Home Index