Nuprl Lemma : no-limited-omniscience
¬LPO
Proof
Definitions occuring in Statement : 
limited-omniscience: LPO
, 
not: ¬A
Definitions unfolded in proof : 
exists: ∃x:A. B[x]
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
uall: ∀[x:A]. B[x]
, 
decidable: Dec(P)
, 
prop: ℙ
, 
false: False
, 
or: P ∨ Q
, 
all: ∀x:A. B[x]
, 
limited-omniscience: LPO
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
not: ¬A
Lemmas referenced : 
btrue_neq_bfalse, 
equal-wf-T-base, 
all_wf, 
not_wf, 
limited-omniscience_wf, 
bool_wf, 
nat_wf, 
no-weak-limited-omniscience
Rules used in proof : 
equalitySymmetry, 
equalityTransitivity, 
productElimination, 
inrFormation, 
baseClosed, 
applyEquality, 
lambdaEquality, 
sqequalRule, 
isectElimination, 
inlFormation, 
voidElimination, 
functionEquality, 
unionElimination, 
hypothesisEquality, 
dependent_functionElimination, 
hypothesis, 
thin, 
independent_functionElimination, 
sqequalHypSubstitution, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
extract_by_obid, 
introduction, 
cut
Latex:
\mneg{}LPO
Date html generated:
2018_07_29-AM-09_29_11
Last ObjectModification:
2018_07_27-PM-04_27_18
Theory : basic
Home
Index