Nuprl Lemma : no-limited-omniscience

¬LPO


Proof




Definitions occuring in Statement :  limited-omniscience: LPO not: ¬A
Definitions unfolded in proof :  exists: x:A. B[x] so_apply: x[s] so_lambda: λ2x.t[x] uall: [x:A]. B[x] decidable: Dec(P) prop: false: False or: P ∨ Q all: x:A. B[x] limited-omniscience: LPO member: t ∈ T implies:  Q not: ¬A
Lemmas referenced :  btrue_neq_bfalse equal-wf-T-base all_wf not_wf limited-omniscience_wf bool_wf nat_wf no-weak-limited-omniscience
Rules used in proof :  equalitySymmetry equalityTransitivity productElimination inrFormation baseClosed applyEquality lambdaEquality sqequalRule isectElimination inlFormation voidElimination functionEquality unionElimination hypothesisEquality dependent_functionElimination hypothesis thin independent_functionElimination sqequalHypSubstitution lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution extract_by_obid introduction cut

Latex:
\mneg{}LPO



Date html generated: 2018_07_29-AM-09_29_11
Last ObjectModification: 2018_07_27-PM-04_27_18

Theory : basic


Home Index