Nuprl Lemma : no-weak-limited-omniscience

¬(∀f:ℕ ⟶ 𝔹Dec(∀n:ℕff))


Proof




Definitions occuring in Statement :  nat: bfalse: ff bool: 𝔹 decidable: Dec(P) all: x:A. B[x] not: ¬A apply: a function: x:A ⟶ B[x] equal: t ∈ T
Definitions unfolded in proof :  uiff: uiff(P;Q) bfalse: ff ifthenelse: if then else fi  assert: b top: Top satisfiable_int_formula: satisfiable_int_formula(fmla) ge: i ≥  lelt: i ≤ j < k int_seg: {i..j-} nat: false: False rev_implies:  Q guard: {T} uimplies: supposing a subtype_rel: A ⊆B true: True and: P ∧ Q iff: ⇐⇒ Q isl: isl(x) exists: x:A. B[x] squash: T or: P ∨ Q decidable: Dec(P) all: x:A. B[x] weak-continuity: weak-continuity(T;V) so_apply: x[s] so_lambda: λ2x.t[x] uall: [x:A]. B[x] prop: member: t ∈ T implies:  Q not: ¬A
Lemmas referenced :  assert_of_bnot iff_weakening_uiff iff_transitivity bnot_wf eqff_to_assert int_term_value_add_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma itermAdd_wf itermConstant_wf intformle_wf intformnot_wf decidable__le false_wf assert_wf assert_of_lt_int less_than_wf int_formula_prop_wf int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_and_lemma itermVar_wf intformless_wf intformand_wf full-omega-unsat nat_properties int_seg_properties iff_imp_equal_bool lt_int_wf iff_wf le_wf int_seg_wf btrue_neq_bfalse equal-wf-base iff_weakening_equal subtype_rel_self bfalse_wf true_wf squash_wf equal_wf not_wf isl_wf equal-wf-T-base decidable_wf bool_wf nat_wf all_wf weak-continuity-bool-bool
Rules used in proof :  addEquality impliesFunctionality addLevel voidEquality isect_memberEquality intEquality int_eqEquality approximateComputation dependent_set_memberEquality setElimination voidElimination independent_isectElimination instantiate imageMemberEquality natural_numberEquality universeEquality independent_pairFormation unionElimination dependent_pairFormation productElimination imageElimination independent_functionElimination equalitySymmetry equalityTransitivity because_Cache functionExtensionality dependent_functionElimination rename baseClosed hypothesisEquality applyEquality lambdaEquality sqequalRule functionEquality thin isectElimination sqequalHypSubstitution lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution hypothesis extract_by_obid introduction cut

Latex:
\mneg{}(\mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbB{}.  Dec(\mforall{}n:\mBbbN{}.  f  n  =  ff))



Date html generated: 2018_07_29-AM-09_29_10
Last ObjectModification: 2018_07_27-PM-04_24_05

Theory : basic


Home Index