Nuprl Lemma : dl-diamond-iterate
∀a:Prog. ∀phi:Prop.  (<(a)*> phi 
⇐⇒ phi ∨ <a> <(a)*> phi)
Proof
Definitions occuring in Statement : 
dl-equiv: (phi 
⇐⇒ psi)
, 
dl-diamond: <x1> x
, 
dl-or: x1 ∨ x
, 
dl-iterate: (x)*
, 
dl-prop: Prop
, 
dl-prog: Prog
, 
all: ∀x:A. B[x]
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
dl-equiv: (phi 
⇐⇒ psi)
, 
and: P ∧ Q
, 
dl-valid: |= phi
, 
dl-prop-sem: [|phi|]
, 
dl-sem: dl-sem(K;n.R[n];m.P[m])
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x.t[x]
, 
member: t ∈ T
, 
top: Top
, 
so_apply: x[s]
, 
so_lambda: so_lambda(x,y,z,w.t[x; y; z; w])
, 
so_apply: x[s1;s2;s3;s4]
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
dl-prog-sem: [|alpha|]
, 
implies: P 
⇒ Q
, 
exists: ∃x:A. B[x]
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
or: P ∨ Q
, 
infix_ap: x f y
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
guard: {T}
, 
cand: A c∧ B
Lemmas referenced : 
dl-ind-dl-implies, 
istype-void, 
dl-ind-dl-diamond, 
dl-ind-dl-iterate, 
dl-ind-dl-or, 
rel_star_wf, 
dl-prog-sem_wf, 
istype-nat, 
subtype_rel_self, 
dl-prop-sem_wf, 
istype-universe, 
dl-prop_wf, 
dl-prog_wf, 
rel_star_iff2
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
independent_pairFormation, 
sqequalRule, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
isect_memberEquality_alt, 
voidElimination, 
hypothesis, 
productElimination, 
productIsType, 
because_Cache, 
universeIsType, 
applyEquality, 
hypothesisEquality, 
lambdaEquality_alt, 
instantiate, 
universeEquality, 
functionIsType, 
unionElimination, 
unionIsType, 
dependent_functionElimination, 
independent_functionElimination, 
inrFormation_alt, 
dependent_pairFormation_alt, 
inhabitedIsType, 
inlFormation_alt, 
hyp_replacement, 
equalitySymmetry, 
rename, 
equalityIstype
Latex:
\mforall{}a:Prog.  \mforall{}phi:Prop.    (<(a)*>  phi  \mLeftarrow{}{}\mRightarrow{}  phi  \mvee{}  <a>  <(a)*>  phi)
Date html generated:
2019_10_15-AM-11_44_45
Last ObjectModification:
2019_03_27-AM-00_47_19
Theory : dynamic!logic
Home
Index