Nuprl Lemma : dl-valid-box-choose-dist-and-2

a,b:Prog. ∀phi:Prop.  (|= [a] phi ∧ [b] phi  |= [a ⋃ b] phi)


Proof




Definitions occuring in Statement :  dl-valid: |= phi dl-box: [x1] x dl-and: x1 ∧ x dl-choose: x1 ⋃ x dl-prop: Prop dl-prog: Prog all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q dl-valid: |= phi member: t ∈ T dl-prop-sem: [|phi|] dl-sem: dl-sem(K;n.R[n];m.P[m]) uall: [x:A]. B[x] so_lambda: λ2x.t[x] top: Top so_apply: x[s] so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]) so_apply: x[s1;s2;s3;s4] so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] dl-prog-sem: [|alpha|] and: P ∧ Q or: P ∨ Q subtype_rel: A ⊆B prop:
Lemmas referenced :  istype-void dl-prog-sem_wf istype-atom subtype_rel_self istype-universe dl-valid_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt sqequalHypSubstitution cut hypothesis dependent_functionElimination thin hypothesisEquality sqequalRule introduction extract_by_obid isectElimination isect_memberEquality_alt voidElimination productElimination unionElimination unionIsType universeIsType applyEquality lambdaEquality_alt instantiate universeEquality because_Cache functionIsType inhabitedIsType independent_functionElimination

Latex:
\mforall{}a,b:Prog.  \mforall{}phi:Prop.    (|=  [a]  phi  \mwedge{}  [b]  phi  {}\mRightarrow{}  |=  [a  \mcup{}  b]  phi)



Date html generated: 2019_10_15-AM-11_45_16
Last ObjectModification: 2019_03_26-AM-11_58_26

Theory : dynamic!logic


Home Index