Nuprl Lemma : has-value-is-list-map-iff-has-value-is-list
∀[T:Type]. ∀[t:colist(T)]. ∀[f:Base].  ((is-list(t))↓ ⇐⇒ (is-list(map(f;t)))↓)
Proof
Definitions occuring in Statement : 
is-list: is-list(t), 
map: map(f;as), 
colist: colist(T), 
has-value: (a)↓, 
uall: ∀[x:A]. B[x], 
iff: P ⇐⇒ Q, 
base: Base, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
top: Top, 
uimplies: b supposing a, 
bool: 𝔹, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
implies: P ⇒ Q, 
prop: ℙ, 
rev_implies: P ⇐ Q, 
has-value: (a)↓
Lemmas referenced : 
is-list-map, 
has-value_wf-partial, 
bool_wf, 
union-value-type, 
unit_wf2, 
is-list_wf, 
base_wf, 
colist_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
sqequalTransitivity, 
computationStep, 
isectElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
isect_memberFormation, 
independent_isectElimination, 
because_Cache, 
cumulativity, 
hypothesisEquality, 
independent_pairFormation, 
lambdaFormation, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
independent_pairEquality, 
lambdaEquality, 
dependent_functionElimination, 
axiomSqleEquality, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[t:colist(T)].  \mforall{}[f:Base].    ((is-list(t))\mdownarrow{}  \mLeftarrow{}{}\mRightarrow{}  (is-list(map(f;t)))\mdownarrow{})
 Date html generated: 
2018_05_21-PM-10_19_51
 Last ObjectModification: 
2017_07_26-PM-06_37_16
Theory : eval!all
Home
Index