Nuprl Lemma : has-value-is-list-map-iff-has-value-is-list

[T:Type]. ∀[t:colist(T)]. ∀[f:Base].  ((is-list(t))↓ ⇐⇒ (is-list(map(f;t)))↓)


Proof




Definitions occuring in Statement :  is-list: is-list(t) map: map(f;as) colist: colist(T) has-value: (a)↓ uall: [x:A]. B[x] iff: ⇐⇒ Q base: Base universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T top: Top uimplies: supposing a bool: 𝔹 iff: ⇐⇒ Q and: P ∧ Q implies:  Q prop: rev_implies:  Q has-value: (a)↓
Lemmas referenced :  is-list-map has-value_wf-partial bool_wf union-value-type unit_wf2 is-list_wf base_wf colist_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity cut introduction extract_by_obid sqequalHypSubstitution sqequalTransitivity computationStep isectElimination thin isect_memberEquality voidElimination voidEquality hypothesis isect_memberFormation independent_isectElimination because_Cache cumulativity hypothesisEquality independent_pairFormation lambdaFormation equalityTransitivity equalitySymmetry productElimination independent_pairEquality lambdaEquality dependent_functionElimination axiomSqleEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[t:colist(T)].  \mforall{}[f:Base].    ((is-list(t))\mdownarrow{}  \mLeftarrow{}{}\mRightarrow{}  (is-list(map(f;t)))\mdownarrow{})



Date html generated: 2018_05_21-PM-10_19_51
Last ObjectModification: 2017_07_26-PM-06_37_16

Theory : eval!all


Home Index