Nuprl Lemma : islist-append-nil-is-list
∀[l:Base]. l ∈ Base List supposing islist(l @ [])
Proof
Definitions occuring in Statement : 
islist: islist(t), 
append: as @ bs, 
nil: [], 
list: T List, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
base: Base
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
top: Top, 
prop: ℙ
Lemmas referenced : 
base_wf, 
islist_wf, 
islist-implies-is-list, 
islist-append-nil-sqequal-islist
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
lemma_by_obid, 
isectElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
hypothesisEquality, 
independent_isectElimination, 
sqequalRule, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
baseApply, 
closedConclusion, 
baseClosed, 
because_Cache
Latex:
\mforall{}[l:Base].  l  \mmember{}  Base  List  supposing  islist(l  @  [])
 Date html generated: 
2016_05_15-PM-10_07_26
 Last ObjectModification: 
2016_01_16-PM-04_08_43
Theory : eval!all
Home
Index