Nuprl Lemma : islist-append-nil-is-list

[l:Base]. l ∈ Base List supposing islist(l [])


Proof




Definitions occuring in Statement :  islist: islist(t) append: as bs nil: [] list: List uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T base: Base
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a top: Top prop:
Lemmas referenced :  base_wf islist_wf islist-implies-is-list islist-append-nil-sqequal-islist
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution lemma_by_obid isectElimination thin isect_memberEquality voidElimination voidEquality hypothesis hypothesisEquality independent_isectElimination sqequalRule axiomEquality equalityTransitivity equalitySymmetry baseApply closedConclusion baseClosed because_Cache

Latex:
\mforall{}[l:Base].  l  \mmember{}  Base  List  supposing  islist(l  @  [])



Date html generated: 2016_05_15-PM-10_07_26
Last ObjectModification: 2016_01_16-PM-04_08_43

Theory : eval!all


Home Index