Nuprl Lemma : islist-implies-is-list

[t:Base]. t ∈ Base List supposing islist(t)


Proof




Definitions occuring in Statement :  islist: islist(t) list: List uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T base: Base
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a islist: islist(t) eval_list: eval_list(t) list_ind: list_ind nat: implies:  Q false: False ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A all: x:A. B[x] top: Top and: P ∧ Q prop: subtype_rel: A ⊆B decidable: Dec(P) or: P ∨ Q compose: g sq_type: SQType(T) guard: {T} uiff: uiff(P;Q) ifthenelse: if then else fi  btrue: tt iff: ⇐⇒ Q rev_implies:  Q bfalse: ff has-value: (a)↓ cons: [a b] nil: [] it:
Lemmas referenced :  nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf has-value_wf_base int_subtype_base base_wf fun_exp0_lemma strictness-apply bottom_diverge decidable__le subtract_wf intformnot_wf itermSubtract_wf int_formula_prop_not_lemma int_term_value_subtract_lemma fun_exp_unroll le_wf islist_wf eq_int_wf intformeq_wf int_formula_prop_eq_lemma assert_wf bnot_wf not_wf equal-wf-base bool_cases subtype_base_sq bool_wf bool_subtype_base eqtt_to_assert assert_of_eq_int eqff_to_assert iff_transitivity iff_weakening_uiff assert_of_bnot has-value-implies-dec-ispair-2 top_wf cons_wf has-value-implies-dec-isaxiom-2 nil_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution sqequalRule hypothesis compactness thin extract_by_obid isectElimination hypothesisEquality setElimination rename intWeakElimination lambdaFormation natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll independent_functionElimination axiomEquality equalityTransitivity equalitySymmetry instantiate baseApply closedConclusion baseClosed applyEquality unionElimination dependent_set_memberEquality because_Cache cumulativity productElimination impliesFunctionality callbyvalueCallbyvalue callbyvalueReduce

Latex:
\mforall{}[t:Base].  t  \mmember{}  Base  List  supposing  islist(t)



Date html generated: 2018_05_21-PM-10_18_50
Last ObjectModification: 2017_07_26-PM-06_36_45

Theory : eval!all


Home Index