Nuprl Lemma : step-function_wf

[T:Type]. ∀[transition:T ⟶ T ⟶ ℙ]. ∀[X:Type].  (step-function(T;transition;X) ∈ Type)


Proof




Definitions occuring in Statement :  step-function: step-function(T;transition;X) uall: [x:A]. B[x] prop: member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T step-function: step-function(T;transition;X) so_lambda: λ2x.t[x] subtype_rel: A ⊆B so_apply: x[s] exists: x:A. B[x] prop:
Lemmas referenced :  exists_wf isect2_wf isect2_subtype_rel
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule setEquality hypothesisEquality lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesis lambdaEquality applyEquality axiomEquality equalityTransitivity equalitySymmetry universeEquality isect_memberEquality because_Cache functionEquality cumulativity

Latex:
\mforall{}[T:Type].  \mforall{}[transition:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[X:Type].    (step-function(T;transition;X)  \mmember{}  Type)



Date html generated: 2016_05_15-PM-10_11_38
Last ObjectModification: 2015_12_27-PM-05_58_22

Theory : eval!all


Home Index