Nuprl Lemma : step-function_wf
∀[T:Type]. ∀[transition:T ⟶ T ⟶ ℙ]. ∀[X:Type].  (step-function(T;transition;X) ∈ Type)
Proof
Definitions occuring in Statement : 
step-function: step-function(T;transition;X)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
step-function: step-function(T;transition;X)
, 
so_lambda: λ2x.t[x]
, 
subtype_rel: A ⊆r B
, 
so_apply: x[s]
, 
exists: ∃x:A. B[x]
, 
prop: ℙ
Lemmas referenced : 
exists_wf, 
isect2_wf, 
isect2_subtype_rel
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
setEquality, 
hypothesisEquality, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
lambdaEquality, 
applyEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
isect_memberEquality, 
because_Cache, 
functionEquality, 
cumulativity
Latex:
\mforall{}[T:Type].  \mforall{}[transition:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[X:Type].    (step-function(T;transition;X)  \mmember{}  Type)
Date html generated:
2016_05_15-PM-10_11_38
Last ObjectModification:
2015_12_27-PM-05_58_22
Theory : eval!all
Home
Index