Nuprl Lemma : fpf-single_wf3
∀[A,B:Type]. ∀[x:A]. (x : B ∈ a:A fp-> Type)
Proof
Definitions occuring in Statement :
fpf-single: x : v
,
fpf: a:A fp-> B[a]
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
universe: Type
Definitions unfolded in proof :
fpf-single: x : v
,
fpf: a:A fp-> B[a]
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
prop: ℙ
Lemmas referenced :
cons_wf,
nil_wf,
l_member_wf
Rules used in proof :
sqequalSubstitution,
sqequalRule,
sqequalReflexivity,
sqequalTransitivity,
computationStep,
isect_memberFormation,
introduction,
cut,
dependent_pairEquality,
lemma_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesisEquality,
hypothesis,
lambdaEquality,
setEquality,
functionEquality,
cumulativity,
universeEquality,
axiomEquality,
equalityTransitivity,
equalitySymmetry,
isect_memberEquality,
because_Cache
Latex:
\mforall{}[A,B:Type]. \mforall{}[x:A]. (x : B \mmember{} a:A fp-> Type)
Date html generated:
2018_05_21-PM-09_24_30
Last ObjectModification:
2018_02_09-AM-10_19_54
Theory : finite!partial!functions
Home
Index