Nuprl Lemma : Des_wf

[A:Type]. ∀[<:A ⟶ A ⟶ ℙ].  (Des(A;a,b.<[a;b]) ∈ ℙ)


Proof




Definitions occuring in Statement :  Des: Des(A;a,b.<[a; b]) uall: [x:A]. B[x] prop: so_apply: x[s1;s2] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T Des: Des(A;a,b.<[a; b]) so_lambda: λ2x.t[x] so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] prop: so_apply: x[s]
Lemmas referenced :  set_wf list_wf descending_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis lambdaEquality applyEquality axiomEquality equalityTransitivity equalitySymmetry functionEquality cumulativity universeEquality isect_memberEquality because_Cache

Latex:
\mforall{}[A:Type].  \mforall{}[<:A  {}\mrightarrow{}  A  {}\mrightarrow{}  \mBbbP{}].    (Des(A;a,b.<[a;b])  \mmember{}  \mBbbP{})



Date html generated: 2016_05_15-PM-04_17_05
Last ObjectModification: 2015_12_27-PM-02_57_13

Theory : general


Home Index