Nuprl Lemma : descending_wf

[A:Type]. ∀[<:A ⟶ A ⟶ ℙ]. ∀[L:A List].  (descending(a,b.<[a;b];L) ∈ ℙ)


Proof




Definitions occuring in Statement :  descending: descending(a,b.<[a; b];L) list: List uall: [x:A]. B[x] prop: so_apply: x[s1;s2] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T descending: descending(a,b.<[a; b];L) so_lambda: λ2x.t[x] so_apply: x[s1;s2] int_seg: {i..j-} uimplies: supposing a guard: {T} lelt: i ≤ j < k and: P ∧ Q all: x:A. B[x] decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A top: Top prop: less_than: a < b squash: T uiff: uiff(P;Q) so_apply: x[s]
Lemmas referenced :  list_wf false_wf int_term_value_subtract_lemma int_formula_prop_less_lemma itermSubtract_wf intformless_wf subtract-is-int-iff decidable__lt int_formula_prop_wf int_term_value_var_lemma int_term_value_add_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermVar_wf itermAdd_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__le int_seg_properties select_wf length_wf subtract_wf int_seg_wf all_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality cumulativity hypothesisEquality hypothesis lambdaEquality applyEquality because_Cache addEquality setElimination rename independent_isectElimination productElimination dependent_functionElimination unionElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll pointwiseFunctionality equalityTransitivity equalitySymmetry promote_hyp imageElimination baseApply closedConclusion baseClosed axiomEquality functionEquality universeEquality

Latex:
\mforall{}[A:Type].  \mforall{}[<:A  {}\mrightarrow{}  A  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[L:A  List].    (descending(a,b.<[a;b];L)  \mmember{}  \mBbbP{})



Date html generated: 2016_05_15-PM-04_16_33
Last ObjectModification: 2016_01_16-AM-11_07_51

Theory : general


Home Index