Nuprl Lemma : adjacent-to-same-sublist2
∀[T:Type]
  ∀L1,L2:T List. ∀a,b,c:T.
    L1 ⊆ L2 ⇒ adjacent(T;L1;a;b) ⇒ adjacent(T;L2;a;c) ⇒ (c before b ∈ L2 ∨ (b = c ∈ T)) supposing no_repeats(T;L2)
Proof
Definitions occuring in Statement : 
adjacent: adjacent(T;L;x;y), 
l_before: x before y ∈ l, 
sublist: L1 ⊆ L2, 
no_repeats: no_repeats(T;l), 
list: T List, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
or: P ∨ Q, 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
uimplies: b supposing a, 
member: t ∈ T, 
implies: P ⇒ Q, 
prop: ℙ
Lemmas referenced : 
no_repeats_witness, 
adjacent-sublist, 
before-adjacent2, 
adjacent_wf, 
sublist_wf, 
no_repeats_wf, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
introduction, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
independent_functionElimination, 
hypothesis, 
rename, 
because_Cache, 
dependent_functionElimination, 
independent_isectElimination, 
universeEquality
Latex:
\mforall{}[T:Type]
    \mforall{}L1,L2:T  List.  \mforall{}a,b,c:T.
        L1  \msubseteq{}  L2  {}\mRightarrow{}  adjacent(T;L1;a;b)  {}\mRightarrow{}  adjacent(T;L2;a;c)  {}\mRightarrow{}  (c  before  b  \mmember{}  L2  \mvee{}  (b  =  c)) 
        supposing  no\_repeats(T;L2)
Date html generated:
2016_05_15-PM-03_42_03
Last ObjectModification:
2015_12_27-PM-01_18_12
Theory : general
Home
Index