Nuprl Lemma : before-adjacent2
∀[T:Type]
  ∀L:T List. ∀x,y:T.
    adjacent(T;L;x;y) 
⇒ (∀z:T. (x before z ∈ L 
⇒ (y before z ∈ L ∨ (z = y ∈ T)))) supposing no_repeats(T;L)
Proof
Definitions occuring in Statement : 
adjacent: adjacent(T;L;x;y)
, 
l_before: x before y ∈ l
, 
no_repeats: no_repeats(T;l)
, 
list: T List
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
or: P ∨ Q
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
guard: {T}
, 
and: P ∧ Q
, 
or: P ∨ Q
, 
prop: ℙ
, 
uiff: uiff(P;Q)
, 
not: ¬A
, 
false: False
, 
squash: ↓T
, 
true: True
Lemmas referenced : 
no_repeats_witness, 
adjacent-member, 
l_before_member, 
l_tricotomy, 
l_before_wf, 
equal_wf, 
adjacent_wf, 
no_repeats_wf, 
list_wf, 
before-adjacent, 
l_before_antisymmetry, 
no_repeats_iff, 
squash_wf, 
true_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
independent_functionElimination, 
hypothesis, 
rename, 
because_Cache, 
dependent_functionElimination, 
productElimination, 
unionElimination, 
sqequalRule, 
inrFormation, 
cumulativity, 
inlFormation, 
universeEquality, 
independent_isectElimination, 
voidElimination, 
equalitySymmetry, 
hyp_replacement, 
applyEquality, 
lambdaEquality, 
imageElimination, 
equalityTransitivity, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed
Latex:
\mforall{}[T:Type]
    \mforall{}L:T  List.  \mforall{}x,y:T.
        adjacent(T;L;x;y)  {}\mRightarrow{}  (\mforall{}z:T.  (x  before  z  \mmember{}  L  {}\mRightarrow{}  (y  before  z  \mmember{}  L  \mvee{}  (z  =  y)))) 
        supposing  no\_repeats(T;L)
Date html generated:
2016_10_25-AM-10_46_25
Last ObjectModification:
2016_07_12-AM-06_55_53
Theory : general
Home
Index