Nuprl Lemma : before-adjacent2

[T:Type]
  ∀L:T List. ∀x,y:T.
    adjacent(T;L;x;y)  (∀z:T. (x before z ∈  (y before z ∈ L ∨ (z y ∈ T)))) supposing no_repeats(T;L)


Proof




Definitions occuring in Statement :  adjacent: adjacent(T;L;x;y) l_before: before y ∈ l no_repeats: no_repeats(T;l) list: List uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] implies:  Q or: P ∨ Q universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] uimplies: supposing a member: t ∈ T implies:  Q guard: {T} and: P ∧ Q or: P ∨ Q prop: uiff: uiff(P;Q) not: ¬A false: False squash: T true: True
Lemmas referenced :  no_repeats_witness adjacent-member l_before_member l_tricotomy l_before_wf equal_wf adjacent_wf no_repeats_wf list_wf before-adjacent l_before_antisymmetry no_repeats_iff squash_wf true_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality independent_functionElimination hypothesis rename because_Cache dependent_functionElimination productElimination unionElimination sqequalRule inrFormation cumulativity inlFormation universeEquality independent_isectElimination voidElimination equalitySymmetry hyp_replacement applyEquality lambdaEquality imageElimination equalityTransitivity natural_numberEquality imageMemberEquality baseClosed

Latex:
\mforall{}[T:Type]
    \mforall{}L:T  List.  \mforall{}x,y:T.
        adjacent(T;L;x;y)  {}\mRightarrow{}  (\mforall{}z:T.  (x  before  z  \mmember{}  L  {}\mRightarrow{}  (y  before  z  \mmember{}  L  \mvee{}  (z  =  y)))) 
        supposing  no\_repeats(T;L)



Date html generated: 2016_10_25-AM-10_46_25
Last ObjectModification: 2016_07_12-AM-06_55_53

Theory : general


Home Index