Nuprl Lemma : l_tricotomy

[T:Type]. ∀x,y:T. ∀L:T List.  ((x ∈ L)  (y ∈ L)  (((x y ∈ T) ∨ before y ∈ L) ∨ before x ∈ L))


Proof




Definitions occuring in Statement :  l_before: before y ∈ l l_member: (x ∈ l) list: List uall: [x:A]. B[x] all: x:A. B[x] implies:  Q or: P ∨ Q universe: Type equal: t ∈ T
Definitions unfolded in proof :  l_before: before y ∈ l l_member: (x ∈ l) uall: [x:A]. B[x] all: x:A. B[x] implies:  Q exists: x:A. B[x] cand: c∧ B member: t ∈ T prop: so_lambda: λ2x.t[x] nat: uimplies: supposing a ge: i ≥  decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) false: False not: ¬A top: Top and: P ∧ Q so_apply: x[s] squash: T sublist: L1 ⊆ L2 int_seg: {i..j-} bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  uiff: uiff(P;Q) lelt: i ≤ j < k le: A ≤ B bfalse: ff sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b increasing: increasing(f;k) subtract: m nequal: a ≠ b ∈  less_than': less_than'(a;b) subtype_rel: A ⊆B iff: ⇐⇒ Q rev_implies:  Q select: L[n] cons: [a b] true: True
Lemmas referenced :  exists_wf nat_wf less_than_wf length_wf equal_wf select_wf nat_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf list_wf decidable__lt sublist_wf cons_wf nil_wf decidable__equal_int squash_wf le_wf intformeq_wf int_formula_prop_eq_lemma intformless_wf int_formula_prop_less_lemma or_wf length_of_cons_lemma length_of_nil_lemma eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int lelt_wf eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int int_seg_wf int_seg_properties itermAdd_wf int_term_value_add_lemma increasing_wf false_wf all_wf non_neg_length length_wf_nat equal-wf-T-base assert_wf select-cons-hd bnot_wf not_wf uiff_transitivity iff_transitivity iff_weakening_uiff assert_of_bnot int_subtype_base true_wf select_cons_tl length-singleton iff_weakening_equal subtract_wf itermSubtract_wf int_term_value_subtract_lemma
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation lambdaFormation sqequalHypSubstitution productElimination thin cut introduction extract_by_obid isectElimination hypothesis lambdaEquality productEquality setElimination rename because_Cache cumulativity hypothesisEquality independent_isectElimination dependent_functionElimination natural_numberEquality unionElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll universeEquality inlFormation inrFormation applyEquality imageElimination equalityTransitivity equalitySymmetry imageMemberEquality baseClosed equalityElimination dependent_set_memberEquality promote_hyp instantiate independent_functionElimination addEquality functionExtensionality applyLambdaEquality impliesFunctionality

Latex:
\mforall{}[T:Type].  \mforall{}x,y:T.  \mforall{}L:T  List.    ((x  \mmember{}  L)  {}\mRightarrow{}  (y  \mmember{}  L)  {}\mRightarrow{}  (((x  =  y)  \mvee{}  x  before  y  \mmember{}  L)  \mvee{}  y  before  x  \mmember{}  L))



Date html generated: 2017_04_14-AM-09_30_01
Last ObjectModification: 2017_02_27-PM-04_02_27

Theory : list_1


Home Index