Nuprl Lemma : adjacent-member

[T:Type]. ∀L:T List. ∀x,y:T.  (adjacent(T;L;x;y)  {(x ∈ L) ∧ (y ∈ L)})


Proof




Definitions occuring in Statement :  adjacent: adjacent(T;L;x;y) l_member: (x ∈ l) list: List uall: [x:A]. B[x] guard: {T} all: x:A. B[x] implies:  Q and: P ∧ Q universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] implies:  Q member: t ∈ T prop: guard: {T} and: P ∧ Q cand: c∧ B
Lemmas referenced :  adjacent-before l_before_member l_before_member2 adjacent_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin because_Cache dependent_functionElimination hypothesisEquality independent_functionElimination hypothesis universeEquality independent_pairFormation

Latex:
\mforall{}[T:Type].  \mforall{}L:T  List.  \mforall{}x,y:T.    (adjacent(T;L;x;y)  {}\mRightarrow{}  \{(x  \mmember{}  L)  \mwedge{}  (y  \mmember{}  L)\})



Date html generated: 2016_05_15-PM-03_41_21
Last ObjectModification: 2015_12_27-PM-01_17_41

Theory : general


Home Index