Nuprl Lemma : adjacent-member
∀[T:Type]. ∀L:T List. ∀x,y:T.  (adjacent(T;L;x;y) 
⇒ {(x ∈ L) ∧ (y ∈ L)})
Proof
Definitions occuring in Statement : 
adjacent: adjacent(T;L;x;y)
, 
l_member: (x ∈ l)
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
guard: {T}
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
guard: {T}
, 
and: P ∧ Q
, 
cand: A c∧ B
Lemmas referenced : 
adjacent-before, 
l_before_member, 
l_before_member2, 
adjacent_wf, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
because_Cache, 
dependent_functionElimination, 
hypothesisEquality, 
independent_functionElimination, 
hypothesis, 
universeEquality, 
independent_pairFormation
Latex:
\mforall{}[T:Type].  \mforall{}L:T  List.  \mforall{}x,y:T.    (adjacent(T;L;x;y)  {}\mRightarrow{}  \{(x  \mmember{}  L)  \mwedge{}  (y  \mmember{}  L)\})
Date html generated:
2016_05_15-PM-03_41_21
Last ObjectModification:
2015_12_27-PM-01_17_41
Theory : general
Home
Index