Nuprl Lemma : adjacent-to-same2
∀[T:Type]. ∀[L:T List]. ∀[a,b,c:T].
  (b = c ∈ T) supposing (adjacent(T;L;c;a) and adjacent(T;L;b;a) and no_repeats(T;L))
Proof
Definitions occuring in Statement : 
adjacent: adjacent(T;L;x;y)
, 
no_repeats: no_repeats(T;l)
, 
list: T List
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
or: P ∨ Q
, 
not: ¬A
, 
false: False
Lemmas referenced : 
before-adjacent, 
adjacent_wf, 
no_repeats_wf, 
list_wf, 
adjacent-before, 
l_before_antisymmetry
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
because_Cache, 
dependent_functionElimination, 
hypothesisEquality, 
independent_isectElimination, 
hypothesis, 
independent_functionElimination, 
sqequalRule, 
isect_memberEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
unionElimination, 
voidElimination
Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].  \mforall{}[a,b,c:T].
    (b  =  c)  supposing  (adjacent(T;L;c;a)  and  adjacent(T;L;b;a)  and  no\_repeats(T;L))
Date html generated:
2016_05_15-PM-03_41_55
Last ObjectModification:
2015_12_27-PM-01_18_17
Theory : general
Home
Index