Nuprl Lemma : adjacent-to-same2

[T:Type]. ∀[L:T List]. ∀[a,b,c:T].
  (b c ∈ T) supposing (adjacent(T;L;c;a) and adjacent(T;L;b;a) and no_repeats(T;L))


Proof




Definitions occuring in Statement :  adjacent: adjacent(T;L;x;y) no_repeats: no_repeats(T;l) list: List uimplies: supposing a uall: [x:A]. B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x] implies:  Q prop: or: P ∨ Q not: ¬A false: False
Lemmas referenced :  before-adjacent adjacent_wf no_repeats_wf list_wf adjacent-before l_before_antisymmetry
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin because_Cache dependent_functionElimination hypothesisEquality independent_isectElimination hypothesis independent_functionElimination sqequalRule isect_memberEquality axiomEquality equalityTransitivity equalitySymmetry universeEquality unionElimination voidElimination

Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].  \mforall{}[a,b,c:T].
    (b  =  c)  supposing  (adjacent(T;L;c;a)  and  adjacent(T;L;b;a)  and  no\_repeats(T;L))



Date html generated: 2016_05_15-PM-03_41_55
Last ObjectModification: 2015_12_27-PM-01_18_17

Theory : general


Home Index