Nuprl Lemma : apply?_wf
∀[A,T:Type]. ∀[f:A ⟶ (T + Top)]. ∀[x:A]. ∀[d:T].  (f(x)?d ∈ T)
Proof
Definitions occuring in Statement : 
apply?: f(x)?d
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
union: left + right
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
apply?: f(x)?d
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
isl: isl(x)
, 
outl: outl(x)
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
bfalse: ff
, 
prop: ℙ
Lemmas referenced : 
top_wf, 
equal_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
applyEquality, 
functionExtensionality, 
hypothesisEquality, 
cumulativity, 
thin, 
unionEquality, 
extract_by_obid, 
hypothesis, 
lambdaFormation, 
unionElimination, 
sqequalRule, 
sqequalHypSubstitution, 
isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
independent_functionElimination, 
axiomEquality, 
isect_memberEquality, 
because_Cache, 
functionEquality, 
universeEquality
Latex:
\mforall{}[A,T:Type].  \mforall{}[f:A  {}\mrightarrow{}  (T  +  Top)].  \mforall{}[x:A].  \mforall{}[d:T].    (f(x)?d  \mmember{}  T)
Date html generated:
2017_10_01-AM-09_13_12
Last ObjectModification:
2017_07_26-PM-04_48_41
Theory : general
Home
Index