Nuprl Lemma : apply?_wf

[A,T:Type]. ∀[f:A ⟶ (T Top)]. ∀[x:A]. ∀[d:T].  (f(x)?d ∈ T)


Proof




Definitions occuring in Statement :  apply?: f(x)?d uall: [x:A]. B[x] top: Top member: t ∈ T function: x:A ⟶ B[x] union: left right universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T apply?: f(x)?d all: x:A. B[x] implies:  Q isl: isl(x) outl: outl(x) ifthenelse: if then else fi  btrue: tt bfalse: ff prop:
Lemmas referenced :  top_wf equal_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut applyEquality functionExtensionality hypothesisEquality cumulativity thin unionEquality extract_by_obid hypothesis lambdaFormation unionElimination sqequalRule sqequalHypSubstitution isectElimination equalityTransitivity equalitySymmetry dependent_functionElimination independent_functionElimination axiomEquality isect_memberEquality because_Cache functionEquality universeEquality

Latex:
\mforall{}[A,T:Type].  \mforall{}[f:A  {}\mrightarrow{}  (T  +  Top)].  \mforall{}[x:A].  \mforall{}[d:T].    (f(x)?d  \mmember{}  T)



Date html generated: 2017_10_01-AM-09_13_12
Last ObjectModification: 2017_07_26-PM-04_48_41

Theory : general


Home Index