Nuprl Lemma : cantor-theorem-on-power-set-prop
∀[T:Type]. ∀f:T ⟶ T ⟶ ℙ. ∃P:T ⟶ ℙ. ∀x:T. (¬(∀y:T. (P y 
⇐⇒ f x y)))
Proof
Definitions occuring in Statement : 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
not: ¬A
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
member: t ∈ T
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
not_wf, 
all_wf, 
iff_wf, 
equal_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
dependent_pairFormation, 
lambdaEquality, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
applyEquality, 
functionExtensionality, 
hypothesisEquality, 
cumulativity, 
hypothesis, 
sqequalRule, 
independent_functionElimination, 
voidElimination, 
functionEquality, 
universeEquality, 
dependent_functionElimination, 
productElimination, 
instantiate, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[T:Type].  \mforall{}f:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}.  \mexists{}P:T  {}\mrightarrow{}  \mBbbP{}.  \mforall{}x:T.  (\mneg{}(\mforall{}y:T.  (P  y  \mLeftarrow{}{}\mRightarrow{}  f  x  y)))
Date html generated:
2018_05_21-PM-08_36_13
Last ObjectModification:
2017_07_26-PM-06_00_46
Theory : general
Home
Index