Nuprl Lemma : cantor-theorem-on-power-set-prop

[T:Type]. ∀f:T ⟶ T ⟶ ℙ. ∃P:T ⟶ ℙ. ∀x:T. (∀y:T. (P ⇐⇒ y)))


Proof




Definitions occuring in Statement :  uall: [x:A]. B[x] prop: all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q not: ¬A apply: a function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] exists: x:A. B[x] member: t ∈ T not: ¬A implies:  Q false: False prop: so_lambda: λ2x.t[x] so_apply: x[s] iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q
Lemmas referenced :  not_wf all_wf iff_wf equal_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation dependent_pairFormation lambdaEquality cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin applyEquality functionExtensionality hypothesisEquality cumulativity hypothesis sqequalRule independent_functionElimination voidElimination functionEquality universeEquality dependent_functionElimination productElimination instantiate equalityTransitivity equalitySymmetry

Latex:
\mforall{}[T:Type].  \mforall{}f:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}.  \mexists{}P:T  {}\mrightarrow{}  \mBbbP{}.  \mforall{}x:T.  (\mneg{}(\mforall{}y:T.  (P  y  \mLeftarrow{}{}\mRightarrow{}  f  x  y)))



Date html generated: 2018_05_21-PM-08_36_13
Last ObjectModification: 2017_07_26-PM-06_00_46

Theory : general


Home Index