Nuprl Lemma : church-iS
∀[x:cNat]. (cS ∈ church-inductive{i:l}(x) ⟶ church-inductive{i:l}(cS x))
Proof
Definitions occuring in Statement : 
church-inductive: church-inductive{i:l}(x)
, 
church-succ: cS
, 
church-Nat: cNat
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
apply: f a
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
church-succ: cS
, 
church-inductive: church-inductive{i:l}(x)
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
subtype_rel: A ⊆r B
, 
church-Nat: cNat
, 
prop: ℙ
Lemmas referenced : 
trivial-equal, 
church-Nat_wf, 
istype-universe, 
church-zero_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
sqequalRule, 
isect_memberFormation_alt, 
introduction, 
cut, 
lambdaEquality_alt, 
isect_memberEquality_alt, 
lambdaFormation_alt, 
applyEquality, 
hypothesisEquality, 
isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
hypothesis, 
inhabitedIsType, 
sqequalHypSubstitution, 
functionIsType, 
universeIsType, 
thin, 
because_Cache, 
instantiate, 
extract_by_obid, 
isectIsType, 
universeEquality, 
dependent_functionElimination, 
axiomEquality
Latex:
\mforall{}[x:cNat].  (cS  \mmember{}  church-inductive\{i:l\}(x)  {}\mrightarrow{}  church-inductive\{i:l\}(cS  x))
Date html generated:
2020_05_20-AM-08_05_40
Last ObjectModification:
2019_11_15-PM-10_51_10
Theory : general
Home
Index