Nuprl Lemma : church-iS

[x:cNat]. (cS ∈ church-inductive{i:l}(x) ⟶ church-inductive{i:l}(cS x))


Proof




Definitions occuring in Statement :  church-inductive: church-inductive{i:l}(x) church-succ: cS church-Nat: cNat uall: [x:A]. B[x] member: t ∈ T apply: a function: x:A ⟶ B[x]
Definitions unfolded in proof :  church-succ: cS church-inductive: church-inductive{i:l}(x) uall: [x:A]. B[x] implies:  Q member: t ∈ T all: x:A. B[x] subtype_rel: A ⊆B church-Nat: cNat prop:
Lemmas referenced :  trivial-equal church-Nat_wf istype-universe church-zero_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity sqequalRule isect_memberFormation_alt introduction cut lambdaEquality_alt isect_memberEquality_alt lambdaFormation_alt applyEquality hypothesisEquality isectElimination equalityTransitivity equalitySymmetry hypothesis inhabitedIsType sqequalHypSubstitution functionIsType universeIsType thin because_Cache instantiate extract_by_obid isectIsType universeEquality dependent_functionElimination axiomEquality

Latex:
\mforall{}[x:cNat].  (cS  \mmember{}  church-inductive\{i:l\}(x)  {}\mrightarrow{}  church-inductive\{i:l\}(cS  x))



Date html generated: 2020_05_20-AM-08_05_40
Last ObjectModification: 2019_11_15-PM-10_51_10

Theory : general


Home Index