Nuprl Lemma : destructor-const
∀[A:Type]. destructor{i:l}(T.A)
Proof
Definitions occuring in Statement : 
destructor: destructor{i:l}(T.F[T])
, 
uall: ∀[x:A]. B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
destructor: destructor{i:l}(T.F[T])
, 
decomp: decomp{i:l}(S.F[S];T;x)
, 
constructor: Constr(T.F[T])
, 
ap-con: ap-con(con;L)
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
list_wf, 
subtype_rel_wf, 
base_wf, 
nil_wf, 
equal_wf, 
ap-con_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
isect_memberEquality, 
lambdaEquality, 
sqequalRule, 
dependent_pairEquality, 
hypothesisEquality, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesis, 
setEquality, 
universeEquality, 
cumulativity, 
dependent_set_memberEquality, 
because_Cache, 
applyEquality
Latex:
\mforall{}[A:Type].  destructor\{i:l\}(T.A)
Date html generated:
2018_05_21-PM-08_45_20
Last ObjectModification:
2017_07_26-PM-06_09_07
Theory : general
Home
Index