Nuprl Lemma : destructor-const
∀[A:Type]. destructor{i:l}(T.A)
Proof
Definitions occuring in Statement :
destructor: destructor{i:l}(T.F[T])
,
uall: ∀[x:A]. B[x]
,
universe: Type
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
destructor: destructor{i:l}(T.F[T])
,
decomp: decomp{i:l}(S.F[S];T;x)
,
constructor: Constr(T.F[T])
,
ap-con: ap-con(con;L)
,
prop: ℙ
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
subtype_rel: A ⊆r B
Lemmas referenced :
list_wf,
subtype_rel_wf,
base_wf,
nil_wf,
equal_wf,
ap-con_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
isect_memberEquality,
lambdaEquality,
sqequalRule,
dependent_pairEquality,
hypothesisEquality,
cut,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
setElimination,
rename,
hypothesis,
setEquality,
universeEquality,
cumulativity,
dependent_set_memberEquality,
because_Cache,
applyEquality
Latex:
\mforall{}[A:Type]. destructor\{i:l\}(T.A)
Date html generated:
2018_05_21-PM-08_45_20
Last ObjectModification:
2017_07_26-PM-06_09_07
Theory : general
Home
Index