Nuprl Lemma : div_nat_induction-ext
∀b:{b:ℤ| 1 < b} . ∀[P:ℕ ⟶ ℙ]. (P[0] 
⇒ (∀i:ℕ+. (P[i ÷ b] 
⇒ P[i])) 
⇒ (∀i:ℕ. P[i]))
Proof
Definitions occuring in Statement : 
nat_plus: ℕ+
, 
nat: ℕ
, 
less_than: a < b
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
set: {x:A| B[x]} 
, 
function: x:A ⟶ B[x]
, 
divide: n ÷ m
, 
natural_number: $n
, 
int: ℤ
Definitions unfolded in proof : 
squash: ↓T
, 
or: P ∨ Q
, 
guard: {T}
, 
prop: ℙ
, 
has-value: (a)↓
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
and: P ∧ Q
, 
strict4: strict4(F)
, 
uimplies: b supposing a
, 
so_apply: x[s]
, 
top: Top
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s1;s2;s3;s4]
, 
so_lambda: so_lambda(x,y,z,w.t[x; y; z; w])
, 
uall: ∀[x:A]. B[x]
, 
decidable__int_equal, 
decidable__equal_int, 
so_apply: x[s1;s2]
, 
div_nat_induction, 
member: t ∈ T
Lemmas referenced : 
is-exception_wf, 
base_wf, 
has-value_wf_base, 
equal_wf, 
top_wf, 
lifting-strict-int_eq, 
div_nat_induction, 
decidable__int_equal, 
decidable__equal_int
Rules used in proof : 
inlFormation, 
exceptionSqequal, 
imageElimination, 
imageMemberEquality, 
because_Cache, 
inrFormation, 
decideExceptionCases, 
closedConclusion, 
baseApply, 
independent_functionElimination, 
dependent_functionElimination, 
sqleReflexivity, 
unionElimination, 
unionEquality, 
equalitySymmetry, 
equalityTransitivity, 
hypothesisEquality, 
callbyvalueDecide, 
lambdaFormation, 
independent_pairFormation, 
independent_isectElimination, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
baseClosed, 
isectElimination, 
sqequalHypSubstitution, 
thin, 
sqequalRule, 
hypothesis, 
extract_by_obid, 
instantiate, 
cut, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
introduction
Latex:
\mforall{}b:\{b:\mBbbZ{}|  1  <  b\}  .  \mforall{}[P:\mBbbN{}  {}\mrightarrow{}  \mBbbP{}].  (P[0]  {}\mRightarrow{}  (\mforall{}i:\mBbbN{}\msupplus{}.  (P[i  \mdiv{}  b]  {}\mRightarrow{}  P[i]))  {}\mRightarrow{}  (\mforall{}i:\mBbbN{}.  P[i]))
Date html generated:
2018_05_21-PM-07_49_34
Last ObjectModification:
2018_05_19-AM-07_44_27
Theory : general
Home
Index