Nuprl Lemma : div_nat_induction-ext

b:{b:ℤ1 < b} . ∀[P:ℕ ⟶ ℙ]. (P[0]  (∀i:ℕ+(P[i ÷ b]  P[i]))  (∀i:ℕP[i]))


Proof




Definitions occuring in Statement :  nat_plus: + nat: less_than: a < b uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] implies:  Q set: {x:A| B[x]}  function: x:A ⟶ B[x] divide: n ÷ m natural_number: $n int:
Definitions unfolded in proof :  squash: T or: P ∨ Q guard: {T} prop: has-value: (a)↓ implies:  Q all: x:A. B[x] and: P ∧ Q strict4: strict4(F) uimplies: supposing a so_apply: x[s] top: Top so_lambda: λ2x.t[x] so_apply: x[s1;s2;s3;s4] so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]) uall: [x:A]. B[x] decidable__int_equal decidable__equal_int so_apply: x[s1;s2] div_nat_induction member: t ∈ T
Lemmas referenced :  is-exception_wf base_wf has-value_wf_base equal_wf top_wf lifting-strict-int_eq div_nat_induction decidable__int_equal decidable__equal_int
Rules used in proof :  inlFormation exceptionSqequal imageElimination imageMemberEquality because_Cache inrFormation decideExceptionCases closedConclusion baseApply independent_functionElimination dependent_functionElimination sqleReflexivity unionElimination unionEquality equalitySymmetry equalityTransitivity hypothesisEquality callbyvalueDecide lambdaFormation independent_pairFormation independent_isectElimination voidEquality voidElimination isect_memberEquality baseClosed isectElimination sqequalHypSubstitution thin sqequalRule hypothesis extract_by_obid instantiate cut sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution introduction

Latex:
\mforall{}b:\{b:\mBbbZ{}|  1  <  b\}  .  \mforall{}[P:\mBbbN{}  {}\mrightarrow{}  \mBbbP{}].  (P[0]  {}\mRightarrow{}  (\mforall{}i:\mBbbN{}\msupplus{}.  (P[i  \mdiv{}  b]  {}\mRightarrow{}  P[i]))  {}\mRightarrow{}  (\mforall{}i:\mBbbN{}.  P[i]))



Date html generated: 2018_05_21-PM-07_49_34
Last ObjectModification: 2018_05_19-AM-07_44_27

Theory : general


Home Index