Nuprl Lemma : eqmod-test

m:ℤ(((m 1) (m 1)) ≡ mod m)


Proof




Definitions occuring in Statement :  eqmod: a ≡ mod m all: x:A. B[x] multiply: m subtract: m natural_number: $n int:
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] uimplies: supposing a implies:  Q iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q subtract: m
Lemmas referenced :  subtract_wf eqmod-zero eqmod_functionality_wrt_eqmod multiply_functionality_wrt_eqmod subtract_functionality_wrt_eqmod eqmod_weakening
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation intEquality hypothesisEquality because_Cache multiplyEquality cut lemma_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality hypothesis dependent_functionElimination independent_isectElimination independent_functionElimination productElimination sqequalRule

Latex:
\mforall{}m:\mBbbZ{}.  (((m  -  1)  *  (m  -  1))  \mequiv{}  1  mod  m)



Date html generated: 2016_05_15-PM-06_02_36
Last ObjectModification: 2015_12_27-PM-00_18_16

Theory : general


Home Index