Nuprl Lemma : eqmod-test
∀m:ℤ. (((m - 1) * (m - 1)) ≡ 1 mod m)
Proof
Definitions occuring in Statement : 
eqmod: a ≡ b mod m
, 
all: ∀x:A. B[x]
, 
multiply: n * m
, 
subtract: n - m
, 
natural_number: $n
, 
int: ℤ
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
implies: P 
⇒ Q
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
subtract: n - m
Lemmas referenced : 
subtract_wf, 
eqmod-zero, 
eqmod_functionality_wrt_eqmod, 
multiply_functionality_wrt_eqmod, 
subtract_functionality_wrt_eqmod, 
eqmod_weakening
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
intEquality, 
hypothesisEquality, 
because_Cache, 
multiplyEquality, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
natural_numberEquality, 
hypothesis, 
dependent_functionElimination, 
independent_isectElimination, 
independent_functionElimination, 
productElimination, 
sqequalRule
Latex:
\mforall{}m:\mBbbZ{}.  (((m  -  1)  *  (m  -  1))  \mequiv{}  1  mod  m)
Date html generated:
2016_05_15-PM-06_02_36
Last ObjectModification:
2015_12_27-PM-00_18_16
Theory : general
Home
Index