Nuprl Lemma : exists_uni_wf

[T:Type]. ∀[P:T ⟶ ℙ].  (∃!x:T. P[x] ∈ ℙ)


Proof




Definitions occuring in Statement :  exists_uni: !x:T. P[x] uall: [x:A]. B[x] prop: so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T exists_uni: !x:T. P[x] so_lambda: λ2x.t[x] so_apply: x[s] implies:  Q prop:
Lemmas referenced :  exists_wf and_wf all_wf equal_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaEquality applyEquality functionEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry cumulativity universeEquality isect_memberEquality because_Cache

Latex:
\mforall{}[T:Type].  \mforall{}[P:T  {}\mrightarrow{}  \mBbbP{}].    (\mexists{}!x:T.  P[x]  \mmember{}  \mBbbP{})



Date html generated: 2016_05_15-PM-03_23_14
Last ObjectModification: 2015_12_27-PM-01_05_49

Theory : general


Home Index