Nuprl Lemma : fun-connected-fixedpoint
∀[T:Type]. ∀[f:T ⟶ T]. ∀[x,y:T].  (x = y ∈ T) supposing (((f y) = y ∈ T) and x is f*(y))
Proof
Definitions occuring in Statement : 
fun-connected: y is f*(x)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
so_lambda: λ2x y.t[x; y]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
and: P ∧ Q
, 
guard: {T}
Lemmas referenced : 
fun-connected-induction, 
equal_wf, 
and_wf, 
fun-connected_wf, 
not_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
thin, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
because_Cache, 
dependent_functionElimination, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
functionEquality, 
cumulativity, 
applyEquality, 
functionExtensionality, 
hypothesis, 
independent_functionElimination, 
lambdaFormation, 
dependent_set_memberEquality, 
independent_pairFormation, 
applyLambdaEquality, 
setElimination, 
rename, 
productElimination, 
equalityTransitivity, 
equalitySymmetry, 
axiomEquality, 
isect_memberEquality, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[f:T  {}\mrightarrow{}  T].  \mforall{}[x,y:T].    (x  =  y)  supposing  (((f  y)  =  y)  and  x  is  f*(y))
Date html generated:
2018_05_21-PM-07_46_00
Last ObjectModification:
2017_07_26-PM-05_23_32
Theory : general
Home
Index