Nuprl Lemma : fun-connected-fixedpoint

[T:Type]. ∀[f:T ⟶ T]. ∀[x,y:T].  (x y ∈ T) supposing (((f y) y ∈ T) and is f*(y))


Proof




Definitions occuring in Statement :  fun-connected: is f*(x) uimplies: supposing a uall: [x:A]. B[x] apply: a function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x] so_lambda: λ2y.t[x; y] implies:  Q prop: so_apply: x[s1;s2] and: P ∧ Q guard: {T}
Lemmas referenced :  fun-connected-induction equal_wf and_wf fun-connected_wf not_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin extract_by_obid sqequalHypSubstitution isectElimination because_Cache dependent_functionElimination hypothesisEquality sqequalRule lambdaEquality functionEquality cumulativity applyEquality functionExtensionality hypothesis independent_functionElimination lambdaFormation dependent_set_memberEquality independent_pairFormation applyLambdaEquality setElimination rename productElimination equalityTransitivity equalitySymmetry axiomEquality isect_memberEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[f:T  {}\mrightarrow{}  T].  \mforall{}[x,y:T].    (x  =  y)  supposing  (((f  y)  =  y)  and  x  is  f*(y))



Date html generated: 2018_05_21-PM-07_46_00
Last ObjectModification: 2017_07_26-PM-05_23_32

Theory : general


Home Index