Nuprl Lemma : fun-connected_antisymmetry

[T:Type]. ∀[f:T ⟶ T].  ∀[x,y:T].  (x y ∈ T) supposing (x is f*(y) and is f*(x)) supposing retraction(T;f)


Proof




Definitions occuring in Statement :  retraction: retraction(T;f) fun-connected: is f*(x) uimplies: supposing a uall: [x:A]. B[x] function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a retraction: retraction(T;f) exists: x:A. B[x] prop: fun-connected: is f*(x) all: x:A. B[x] implies:  Q or: P ∨ Q less_than: a < b squash: T and: P ∧ Q satisfiable_int_formula: satisfiable_int_formula(fmla) false: False not: ¬A top: Top
Lemmas referenced :  int_formula_prop_wf int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_and_lemma itermVar_wf intformless_wf intformand_wf satisfiable-full-omega-tt retraction-fun-path retraction_wf fun-connected_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution productElimination thin hypothesis lemma_by_obid isectElimination hypothesisEquality sqequalRule isect_memberEquality axiomEquality because_Cache equalityTransitivity equalitySymmetry functionEquality universeEquality dependent_functionElimination independent_functionElimination independent_isectElimination unionElimination imageElimination natural_numberEquality dependent_pairFormation lambdaEquality int_eqEquality intEquality voidElimination voidEquality independent_pairFormation computeAll

Latex:
\mforall{}[T:Type].  \mforall{}[f:T  {}\mrightarrow{}  T].
    \mforall{}[x,y:T].    (x  =  y)  supposing  (x  is  f*(y)  and  y  is  f*(x))  supposing  retraction(T;f)



Date html generated: 2016_05_15-PM-05_07_10
Last ObjectModification: 2016_01_16-AM-11_32_44

Theory : general


Home Index