Nuprl Lemma : is_prime_wf
∀[n:ℕ]. (is_prime(n) ∈ 𝔹)
Proof
Definitions occuring in Statement : 
is_prime: is_prime(n)
, 
nat: ℕ
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
is_prime: is_prime(n)
, 
subtype_rel: A ⊆r B
, 
all: ∀x:A. B[x]
, 
nat: ℕ
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
isl: isl(x)
Lemmas referenced : 
decidable__prime, 
subtype_rel_self, 
nat_wf, 
decidable_wf, 
prime_wf, 
btrue_wf, 
bfalse_wf, 
equal_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
applyEquality, 
thin, 
instantiate, 
extract_by_obid, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
functionEquality, 
setElimination, 
rename, 
hypothesisEquality, 
because_Cache, 
lambdaFormation, 
unionElimination, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
independent_functionElimination, 
axiomEquality
Latex:
\mforall{}[n:\mBbbN{}].  (is\_prime(n)  \mmember{}  \mBbbB{})
Date html generated:
2018_05_21-PM-06_59_03
Last ObjectModification:
2018_05_19-PM-04_41_40
Theory : general
Home
Index