Nuprl Lemma : lexico_induction

[T:Type]. ∀[lt:T ⟶ T ⟶ ℙ].
  ((∀[Q:T ⟶ ℙ]. ((∀b:T. ((∀a:T. (lt[a;b]  Q[a]))  Q[b]))  (∀b:T. Q[b])))
   (∀[P:(T List) ⟶ ℙ]
        ((∀L:T List. ((∀L':T List. ((L' lexico(T; a,b.lt[a;b]) L)  P[L']))  P[L]))  (∀L:T List. P[L]))))


Proof




Definitions occuring in Statement :  lexico: lexico(T; a,b.lt[a; b]) list: List uall: [x:A]. B[x] prop: infix_ap: y so_apply: x[s1;s2] so_apply: x[s] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T implies:  Q prop: so_lambda: λ2x.t[x] so_apply: x[s1;s2] so_apply: x[s] wellfounded: WellFnd{i}(A;x,y.R[x; y]) guard: {T}
Lemmas referenced :  lexico_well_fnd uall_wf all_wf list_wf
Rules used in proof :  cut lemma_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaFormation independent_functionElimination instantiate functionEquality cumulativity universeEquality sqequalRule lambdaEquality applyEquality

Latex:
\mforall{}[T:Type].  \mforall{}[lt:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].
    ((\mforall{}[Q:T  {}\mrightarrow{}  \mBbbP{}].  ((\mforall{}b:T.  ((\mforall{}a:T.  (lt[a;b]  {}\mRightarrow{}  Q[a]))  {}\mRightarrow{}  Q[b]))  {}\mRightarrow{}  (\mforall{}b:T.  Q[b])))
    {}\mRightarrow{}  (\mforall{}[P:(T  List)  {}\mrightarrow{}  \mBbbP{}]
                ((\mforall{}L:T  List.  ((\mforall{}L':T  List.  ((L'  lexico(T;  a,b.lt[a;b])  L)  {}\mRightarrow{}  P[L']))  {}\mRightarrow{}  P[L]))
                {}\mRightarrow{}  (\mforall{}L:T  List.  P[L]))))



Date html generated: 2016_05_15-PM-06_36_31
Last ObjectModification: 2015_12_27-AM-11_55_10

Theory : general


Home Index