Nuprl Lemma : lexico_well_fnd
∀[T:Type]. ∀[R:T ⟶ T ⟶ ℙ].  (WellFnd{i}(T;a,b.R[a;b]) 
⇒ WellFnd{i}(T List;as,bs.as lexico(T; a,b.R[a;b]) bs))
Proof
Definitions occuring in Statement : 
lexico: lexico(T; a,b.lt[a; b])
, 
list: T List
, 
wellfounded: WellFnd{i}(A;x,y.R[x; y])
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
infix_ap: x f y
, 
so_apply: x[s1;s2]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
all: ∀x:A. B[x]
, 
subtype_rel: A ⊆r B
, 
infix_ap: x f y
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
wellfounded: WellFnd{i}(A;x,y.R[x; y])
, 
guard: {T}
, 
or: P ∨ Q
, 
cons: [a / b]
, 
le: A ≤ B
, 
and: P ∧ Q
, 
less_than': less_than'(a;b)
, 
length: ||as||
, 
list_ind: list_ind, 
nil: []
, 
it: ⋅
, 
false: False
, 
not: ¬A
, 
nat: ℕ
, 
lexico: lexico(T; a,b.lt[a; b])
, 
select: L[n]
, 
uimplies: b supposing a
, 
top: Top
, 
ge: i ≥ j 
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
decidable: Dec(P)
, 
squash: ↓T
, 
true: True
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
sq_type: SQType(T)
, 
uiff: uiff(P;Q)
, 
cand: A c∧ B
, 
subtract: n - m
, 
less_than: a < b
Lemmas referenced : 
wellfounded_wf, 
list_wf, 
equal-wf-T-base, 
nat_wf, 
length_wf_nat, 
int_subtype_base, 
lexico_wf, 
set_wf, 
less_than_wf, 
primrec-wf2, 
equal_wf, 
infix_ap_wf, 
list-cases, 
product_subtype_list, 
all_wf, 
false_wf, 
length_wf, 
nil_wf, 
length_of_nil_lemma, 
le_wf, 
stuck-spread, 
base_wf, 
non_neg_length, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
int_seg_properties, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
length_of_cons_lemma, 
nat_properties, 
itermAdd_wf, 
int_term_value_add_lemma, 
product_well_fnd, 
inv_image_ind_a, 
or_wf, 
subtype_rel_dep_function, 
hd_wf, 
decidable__le, 
intformnot_wf, 
int_formula_prop_not_lemma, 
squash_wf, 
true_wf, 
length_tl, 
iff_weakening_equal, 
subtract_wf, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
tl_wf, 
listp_properties, 
decidable__equal_int, 
subtype_base_sq, 
reduce_hd_cons_lemma, 
add-is-int-iff, 
decidable__lt, 
lelt_wf, 
reduce_tl_nil_lemma, 
reduce_tl_cons_lemma, 
int_seg_wf, 
select_wf, 
select-cons-tl, 
select_cons_tl, 
add-member-int_seg2, 
add-associates, 
add-swap, 
add-commutes, 
zero-add, 
add-subtract-cancel, 
int_seg_subtype, 
subtype_rel_self, 
decidable__equal_nat
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
functionExtensionality, 
hypothesis, 
functionEquality, 
universeEquality, 
rename, 
setElimination, 
setEquality, 
baseApply, 
closedConclusion, 
baseClosed, 
because_Cache, 
intEquality, 
natural_numberEquality, 
instantiate, 
dependent_functionElimination, 
unionElimination, 
promote_hyp, 
hypothesis_subsumption, 
productElimination, 
equalityTransitivity, 
equalitySymmetry, 
dependent_set_memberEquality, 
independent_pairFormation, 
voidEquality, 
independent_functionElimination, 
independent_isectElimination, 
isect_memberEquality, 
voidElimination, 
dependent_pairFormation, 
int_eqEquality, 
computeAll, 
applyLambdaEquality, 
productEquality, 
independent_pairEquality, 
imageElimination, 
imageMemberEquality, 
inlFormation, 
addLevel, 
hyp_replacement, 
pointwiseFunctionality, 
levelHypothesis, 
inrFormation, 
addEquality
Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].
    (WellFnd\{i\}(T;a,b.R[a;b])  {}\mRightarrow{}  WellFnd\{i\}(T  List;as,bs.as  lexico(T;  a,b.R[a;b])  bs))
Date html generated:
2018_05_21-PM-08_37_20
Last ObjectModification:
2017_07_26-PM-06_01_37
Theory : general
Home
Index