Nuprl Lemma : lexico_well_fnd

[T:Type]. ∀[R:T ⟶ T ⟶ ℙ].  (WellFnd{i}(T;a,b.R[a;b])  WellFnd{i}(T List;as,bs.as lexico(T; a,b.R[a;b]) bs))


Proof




Definitions occuring in Statement :  lexico: lexico(T; a,b.lt[a; b]) list: List wellfounded: WellFnd{i}(A;x,y.R[x; y]) uall: [x:A]. B[x] prop: infix_ap: y so_apply: x[s1;s2] implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q member: t ∈ T prop: so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] all: x:A. B[x] subtype_rel: A ⊆B infix_ap: y so_lambda: λ2x.t[x] so_apply: x[s] wellfounded: WellFnd{i}(A;x,y.R[x; y]) guard: {T} or: P ∨ Q cons: [a b] le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) length: ||as|| list_ind: list_ind nil: [] it: false: False not: ¬A nat: lexico: lexico(T; a,b.lt[a; b]) select: L[n] uimplies: supposing a top: Top ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] int_seg: {i..j-} lelt: i ≤ j < k decidable: Dec(P) squash: T true: True iff: ⇐⇒ Q rev_implies:  Q sq_type: SQType(T) uiff: uiff(P;Q) cand: c∧ B subtract: m less_than: a < b
Lemmas referenced :  wellfounded_wf list_wf equal-wf-T-base nat_wf length_wf_nat int_subtype_base lexico_wf set_wf less_than_wf primrec-wf2 equal_wf infix_ap_wf list-cases product_subtype_list all_wf false_wf length_wf nil_wf length_of_nil_lemma le_wf stuck-spread base_wf non_neg_length satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf int_seg_properties intformeq_wf int_formula_prop_eq_lemma length_of_cons_lemma nat_properties itermAdd_wf int_term_value_add_lemma product_well_fnd inv_image_ind_a or_wf subtype_rel_dep_function hd_wf decidable__le intformnot_wf int_formula_prop_not_lemma squash_wf true_wf length_tl iff_weakening_equal subtract_wf itermSubtract_wf int_term_value_subtract_lemma tl_wf listp_properties decidable__equal_int subtype_base_sq reduce_hd_cons_lemma add-is-int-iff decidable__lt lelt_wf reduce_tl_nil_lemma reduce_tl_cons_lemma int_seg_wf select_wf select-cons-tl select_cons_tl add-member-int_seg2 add-associates add-swap add-commutes zero-add add-subtract-cancel int_seg_subtype subtype_rel_self decidable__equal_nat
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality sqequalRule lambdaEquality applyEquality functionExtensionality hypothesis functionEquality universeEquality rename setElimination setEquality baseApply closedConclusion baseClosed because_Cache intEquality natural_numberEquality instantiate dependent_functionElimination unionElimination promote_hyp hypothesis_subsumption productElimination equalityTransitivity equalitySymmetry dependent_set_memberEquality independent_pairFormation voidEquality independent_functionElimination independent_isectElimination isect_memberEquality voidElimination dependent_pairFormation int_eqEquality computeAll applyLambdaEquality productEquality independent_pairEquality imageElimination imageMemberEquality inlFormation addLevel hyp_replacement pointwiseFunctionality levelHypothesis inrFormation addEquality

Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].
    (WellFnd\{i\}(T;a,b.R[a;b])  {}\mRightarrow{}  WellFnd\{i\}(T  List;as,bs.as  lexico(T;  a,b.R[a;b])  bs))



Date html generated: 2018_05_21-PM-08_37_20
Last ObjectModification: 2017_07_26-PM-06_01_37

Theory : general


Home Index