Nuprl Lemma : lexico_wf

[T:Type]. ∀[lt:T ⟶ T ⟶ ℙ].  (lexico(T; a,b.lt[a;b]) ∈ (T List) ⟶ (T List) ⟶ ℙ)


Proof




Definitions occuring in Statement :  lexico: lexico(T; a,b.lt[a; b]) list: List uall: [x:A]. B[x] prop: so_apply: x[s1;s2] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T lexico: lexico(T; a,b.lt[a; b]) prop: and: P ∧ Q so_lambda: λ2x.t[x] so_apply: x[s1;s2] int_seg: {i..j-} uimplies: supposing a guard: {T} lelt: i ≤ j < k all: x:A. B[x] decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A top: Top subtype_rel: A ⊆B so_apply: x[s]
Lemmas referenced :  or_wf less_than_wf length_wf equal_wf exists_wf int_seg_wf select_wf int_seg_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt intformless_wf int_formula_prop_less_lemma intformeq_wf int_formula_prop_eq_lemma all_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lambdaEquality extract_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality hypothesis because_Cache productEquality intEquality natural_numberEquality applyEquality functionExtensionality setElimination rename independent_isectElimination equalityTransitivity equalitySymmetry productElimination dependent_functionElimination unionElimination dependent_pairFormation int_eqEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll axiomEquality functionEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[lt:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].    (lexico(T;  a,b.lt[a;b])  \mmember{}  (T  List)  {}\mrightarrow{}  (T  List)  {}\mrightarrow{}  \mBbbP{})



Date html generated: 2018_05_21-PM-08_36_52
Last ObjectModification: 2017_07_26-PM-06_01_24

Theory : general


Home Index