Nuprl Lemma : llex-le_wf

[A:Type]. ∀[<:A ⟶ A ⟶ ℙ].  (llex-le(A;a,b.<[a;b]) ∈ (A List) ⟶ (A List) ⟶ ℙ)


Proof




Definitions occuring in Statement :  llex-le: llex-le(A;a,b.<[a; b]) list: List uall: [x:A]. B[x] prop: so_apply: x[s1;s2] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T llex-le: llex-le(A;a,b.<[a; b]) infix_ap: y so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] prop:
Lemmas referenced :  or_wf llex_wf equal_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lambdaEquality extract_by_obid sqequalHypSubstitution isectElimination thin applyEquality cumulativity hypothesisEquality functionExtensionality hypothesis axiomEquality equalityTransitivity equalitySymmetry functionEquality universeEquality isect_memberEquality because_Cache

Latex:
\mforall{}[A:Type].  \mforall{}[<:A  {}\mrightarrow{}  A  {}\mrightarrow{}  \mBbbP{}].    (llex-le(A;a,b.<[a;b])  \mmember{}  (A  List)  {}\mrightarrow{}  (A  List)  {}\mrightarrow{}  \mBbbP{})



Date html generated: 2017_02_20-AM-10_55_33
Last ObjectModification: 2017_02_02-PM-09_25_13

Theory : general


Home Index