Nuprl Lemma : llex-le_wf
∀[A:Type]. ∀[<:A ⟶ A ⟶ ℙ].  (llex-le(A;a,b.<[a;b]) ∈ (A List) ⟶ (A List) ⟶ ℙ)
Proof
Definitions occuring in Statement : 
llex-le: llex-le(A;a,b.<[a; b])
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
llex-le: llex-le(A;a,b.<[a; b])
, 
infix_ap: x f y
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
prop: ℙ
Lemmas referenced : 
or_wf, 
llex_wf, 
equal_wf, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lambdaEquality, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
applyEquality, 
cumulativity, 
hypothesisEquality, 
functionExtensionality, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
universeEquality, 
isect_memberEquality, 
because_Cache
Latex:
\mforall{}[A:Type].  \mforall{}[<:A  {}\mrightarrow{}  A  {}\mrightarrow{}  \mBbbP{}].    (llex-le(A;a,b.<[a;b])  \mmember{}  (A  List)  {}\mrightarrow{}  (A  List)  {}\mrightarrow{}  \mBbbP{})
Date html generated:
2017_02_20-AM-10_55_33
Last ObjectModification:
2017_02_02-PM-09_25_13
Theory : general
Home
Index