Nuprl Lemma : member-sub-mset

[T:Type]. ∀L1,L2:T List.  (sub-mset(T; L1; L2)  (∀x:T. ((x ∈ L1)  (x ∈ L2))))


Proof




Definitions occuring in Statement :  sub-mset: sub-mset(T; L1; L2) l_member: (x ∈ l) list: List uall: [x:A]. B[x] all: x:A. B[x] implies:  Q universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] implies:  Q member: t ∈ T prop: l_contains: A ⊆ B so_lambda: λ2x.t[x] so_apply: x[s] iff: ⇐⇒ Q and: P ∧ Q guard: {T}
Lemmas referenced :  sub-mset-contains l_member_wf sub-mset_wf list_wf l_all_iff
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin because_Cache dependent_functionElimination hypothesisEquality independent_functionElimination hypothesis universeEquality sqequalRule lambdaEquality setElimination rename setEquality productElimination

Latex:
\mforall{}[T:Type].  \mforall{}L1,L2:T  List.    (sub-mset(T;  L1;  L2)  {}\mRightarrow{}  (\mforall{}x:T.  ((x  \mmember{}  L1)  {}\mRightarrow{}  (x  \mmember{}  L2))))



Date html generated: 2016_05_15-PM-04_31_56
Last ObjectModification: 2015_12_27-PM-02_49_02

Theory : general


Home Index