Nuprl Lemma : nil_fseg
∀[T:Type]. ∀l:T List. fseg(T;[];l)
Proof
Definitions occuring in Statement : 
fseg: fseg(T;L1;L2)
, 
nil: []
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
universe: Type
Definitions unfolded in proof : 
fseg: fseg(T;L1;L2)
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
member: t ∈ T
, 
prop: ℙ
Lemmas referenced : 
append_back_nil, 
equal_wf, 
list_wf, 
append_wf, 
nil_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
lambdaFormation, 
dependent_pairFormation, 
hypothesisEquality, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
because_Cache, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}l:T  List.  fseg(T;[];l)
Date html generated:
2016_05_15-PM-03_34_58
Last ObjectModification:
2015_12_27-PM-01_13_38
Theory : general
Home
Index