Nuprl Lemma : nil_fseg

[T:Type]. ∀l:T List. fseg(T;[];l)


Proof




Definitions occuring in Statement :  fseg: fseg(T;L1;L2) nil: [] list: List uall: [x:A]. B[x] all: x:A. B[x] universe: Type
Definitions unfolded in proof :  fseg: fseg(T;L1;L2) uall: [x:A]. B[x] all: x:A. B[x] exists: x:A. B[x] member: t ∈ T prop:
Lemmas referenced :  append_back_nil equal_wf list_wf append_wf nil_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation lambdaFormation dependent_pairFormation hypothesisEquality cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesis because_Cache universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}l:T  List.  fseg(T;[];l)



Date html generated: 2016_05_15-PM-03_34_58
Last ObjectModification: 2015_12_27-PM-01_13_38

Theory : general


Home Index