Nuprl Lemma : no-uniform-double-negation-elim
¬(∀[P:ℙ]. ((¬¬P) 
⇒ P))
Proof
Definitions occuring in Statement : 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
not: ¬A
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
not: ¬A
, 
implies: P 
⇒ Q
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
prop: ℙ
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
or: P ∨ Q
, 
false: False
Lemmas referenced : 
double-negation-iff-xmiddle, 
false_wf, 
uall_wf, 
not_wf, 
no-uniform-xmiddle
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
sqequalRule, 
productElimination, 
independent_functionElimination, 
instantiate, 
universeEquality, 
lambdaEquality, 
cumulativity, 
functionEquality, 
hypothesisEquality, 
isect_memberFormation, 
inlFormation, 
voidElimination
Latex:
\mneg{}(\mforall{}[P:\mBbbP{}].  ((\mneg{}\mneg{}P)  {}\mRightarrow{}  P))
Date html generated:
2016_05_15-PM-03_19_12
Last ObjectModification:
2015_12_27-PM-01_03_32
Theory : general
Home
Index