Nuprl Lemma : no-uniform-double-negation-elim

¬(∀[P:ℙ]. ((¬¬P)  P))


Proof




Definitions occuring in Statement :  uall: [x:A]. B[x] prop: not: ¬A implies:  Q
Definitions unfolded in proof :  not: ¬A implies:  Q uall: [x:A]. B[x] member: t ∈ T prop: iff: ⇐⇒ Q and: P ∧ Q so_lambda: λ2x.t[x] so_apply: x[s] or: P ∨ Q false: False
Lemmas referenced :  double-negation-iff-xmiddle false_wf uall_wf not_wf no-uniform-xmiddle
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesis sqequalRule productElimination independent_functionElimination instantiate universeEquality lambdaEquality cumulativity functionEquality hypothesisEquality isect_memberFormation inlFormation voidElimination

Latex:
\mneg{}(\mforall{}[P:\mBbbP{}].  ((\mneg{}\mneg{}P)  {}\mRightarrow{}  P))



Date html generated: 2016_05_15-PM-03_19_12
Last ObjectModification: 2015_12_27-PM-01_03_32

Theory : general


Home Index